Heuristics based on Slope Indices for Simple Type I Assembly Line Balancing Problems and Analyzing for a Few Performance Measures

2020 ◽  
Vol 22 ◽  
pp. 3171-3180 ◽  
Author(s):  
A. Baskar ◽  
M. Anthony Xavior
Author(s):  
Konstantinos N. Genikomsakis ◽  
◽  
Vassilios D. Tourassis

Assembly Line Balancing (ALB) aims at optimally assigning the work elements required to assemble a product to an ordered sequence of workstations, while satisfying precedence constraints. Notwithstanding the advances and developments in ALB over the years, recent and thorough surveys on this field reveal that only a small percentage of companies employ ALB procedures to configure their assembly lines. This paradox may be attributed, to some extent, to the fact that ALB is addressed mostly under ideal conditions. Despite the time variability inherent in manufacturing tasks, there is a strong research trend towards designing and implementing algorithms that consider ALB on a deterministic basis and focus on the optimality of the proposed task assignments according to existing ALB performance measures. In this paper, the need to assess the performance of the proposed solutions of various algorithms in the literature is corroborated through simulation experiments on a benchmark ALB problem under more realistic conditions. A novel ALB index, namely the Effective Cycle Time, ECT, is proposed to assess the quality of alternative assembly line configurations in paced assembly lines operating under task times variations.


2017 ◽  
Vol 37 (4) ◽  
pp. 452-463 ◽  
Author(s):  
Jianping Dou ◽  
Jun Li ◽  
Xia Zhao

Purpose The purpose of this paper is to develop a feasible sequence-oriented new discrete particle swarm optimization (NDPSO) algorithm with novel particles’ updating mechanism for solving simple assembly line balancing problems (SALBPs). Design/methodology/approach In the NDPSO, a task-oriented representation is adopted to solve type I and type II SALBPs, and a particle directly represents a feasible task sequence (FTS) as a permutation. Then, the particle (permutation) is updated as a whole using the geometric crossover based on the edit distance with swaps for two permutations. Furthermore, the fragment mutation with adaptive mutation probability is incorporated into the NDPSO to improve exploration ability. Findings Case study illustrates the effectiveness of the NDPSO. Comparative results between the NDPSO and existing real-encoded PSO (CPSO) and direct discrete PSO (DDPSO) against benchmark instances of type I SALBP and type II SALBP show promising higher performance of the proposed NDPSO. Originality/value A novel particles’ updating mechanism for FTS-encoded particle is proposed to solve the SALBPs. The comparative results indicate that updating of FTS as a whole seems superior to existing updating of FTS by fragment with respect to exploration ability for solving SALBPs. The novel particles’ updating mechanism is also applicable to generalized assembly line balancing problems.


2018 ◽  
Vol 13 (2) ◽  
pp. 455-474 ◽  
Author(s):  
Masood Fathi ◽  
Dalila Benedita Machado Martins Fontes ◽  
Matias Urenda Moris ◽  
Morteza Ghobakhloo

Purpose The purpose of this study is to first investigate the efficiency of the most commonly used performance measures for minimizing the number of workstations (NWs) in approaches addressing simple assembly line balancing problem (SALBP) for both straight and U-shaped line, and second to provide a comparative evaluation of 20 constructive heuristics to find solutions to the SALBP-1. Design/methodology/approach A total of 200 problems are solved by 20 different constructive heuristics for both straight and U-shaped assembly line. Moreover, several comparisons have been made to evaluate the performance of constructive heuristics. Findings Minimizing the smoothness index is not necessarily equivalent to minimizing the NWs; therefore, it should not be used as the fitness function in approaches addressing the SALBP-1. Line efficiency and the idle time are indeed reliable performance measures for minimizing the NWs. The most promising heuristics for straight and U-shaped line configurations for SALBP-1 are also ranked and introduced. Practical implications Results are expected to help scholars and industrial practitioners to better design effective solution methods for having the most balanced assembly line. This study will further help with choosing the most proper heuristic with regard to the problem specifications and line configuration. Originality/value There is limited research assessing the efficiency of the common objectives for SALBP-1. This study is among the first to prove that minimizing the workload smoothness is not equivalent to minimizing the NWs in SALBP-1 studies. This work is also one of the first attempts for evaluating the constructive heuristics for both straight and U-shaped line configurations.


Author(s):  
Mohamed Ismail ◽  
Sayed Kaes Hossain ◽  
Ola Rashwan

This paper presents a new modeling approach called Progressive Modeling (PM) and demonstrates it by solving the Assembly Line Balancing Type I Problem. PM introduces some new concepts that make the modeling process of large-scale complex industrial problems more systematic and their solution algorithms much faster and easily maintained. In the context of SALBP-I, PM introduces a component model to deploy the problem logic and its solution algorithm into several interacting components. The problem is represented as an object-oriented graph G (V, E, W) of vertices, edges, and workstations which enables problem solutions to start anywhere. The novel representation relaxes the only forward and backward tracking approach used in the assembly line balancing literature. A set of well-reported problems in the literature are reported and solved. The paper concludes by demonstrating the efficiency of the new modeling approach and future extensions.


Sign in / Sign up

Export Citation Format

Share Document