Two-phase computation of free convection and entropy generation inside an enclosure filled by a hybrid Al2O3-TiO2-Cu water nanofluid having a corrugated heat source using the generalized Buongiorno’s mathematical model: Employment of finite volume method

2020 ◽  
Vol 30 ◽  
pp. 1056-1067
Author(s):  
Zoubair Boulahia ◽  
Chaimae Boulahia ◽  
Rachid Sehaqui
2012 ◽  
Vol 572 ◽  
pp. 267-272
Author(s):  
Yi Lun Mao ◽  
Qing Dong Zhang ◽  
Chao Yang Sun ◽  
Xiao Feng Zhang

In this paper, complexity of the process of high temperature alloy tubing extrusion is studied using the Finite Volume Method (FVM). We establish mathematical model of high temperature alloy tube extrusion process by using the Finite Volume Method. We develop the simulation program by the control equation of the Finite Volume Method and numerical simulation of the key technologies of the axisymmetric problem in cylindrical coordinates. Inconel690 high temperature alloy tubing extrusion process, for example, we got the squeeze pressure in the steady-state extrusion, Velocity field and the corresponding equivalent strain rate field. By comparing the results obtained by the finite volume method and simulation results from Finite Element Method (FEM) software on DEFORM-2D, we find our mathematical model on high temperature alloy tubing extrusion process is reasonable and correct.


Volume 4 ◽  
2004 ◽  
Author(s):  
Branislav Basara ◽  
Ales Alajbegovic ◽  
Decan Beader

The paper presents calculations of flow in a mixing vessel stirred by a six-blade Rushton impeller. Mathematical model used in computations is based on the ensemble averaged conservation equations. An efficient finite-volume method based on unstructured grids with rotating sliding parts composed of arbitrary polyhedral elements is used together with various turbulence models. Besides the standard k-ε model which served as a reference, k-ε-v2 model (Durbin, 1995) and the recently proposed hybrid EVM/RSM turbulence model (Basara & Jakirlic, 2003) were used in the calculations. The main aim of the paper is to investigate if more advanced turbulence models are needed for this type of CFD applications. The results are compared with the available experimental data.


2011 ◽  
Vol 6 (3) ◽  
pp. 401-423 ◽  
Author(s):  
Stefan Berres ◽  
◽  
Ricardo Ruiz-Baier ◽  
Hartmut Schwandt ◽  
Elmer M. Tory ◽  
...  

2020 ◽  
Vol 213 ◽  
pp. 104715
Author(s):  
Rihua Yang ◽  
Heng Li ◽  
Aiming Yang

2020 ◽  
Vol 72 (10) ◽  
pp. 1303-1309
Author(s):  
Wenbin Gao ◽  
Weifeng Huang ◽  
Tao Wang ◽  
Ying Liu ◽  
Zhihao Wang ◽  
...  

Purpose By modeling and analyzing the two-phase mechanical seal of the fan-shaped groove end face, which is prone to phase change, an effective method to study the flow field of the mechanical seal when both cavitation and boiling exist simultaneously is found. Design/methodology/approach Based on the finite volume method, a fluid model was developed to investigate a two-phase mechanical seal. The validity of the proposed model was verified by comparing with some classical models. Findings By modeling and analyzing the two-phase mechanical seal of the fan-shaped groove end face, which is prone to phase change, the analysis of the gap flow field of the mechanical seal was realized when cavitation and boiling existed simultaneously. Originality/value Based on the model proposed for different conditions, the pressure and phase states in the shallow groove sealing gap were compared. The phase change rate between the mechanical seal faces was also investigated. Peer review The peer review history for this article is available at: https://publons.com/publon/10.1108/ILT-12-2019-0537/


Sign in / Sign up

Export Citation Format

Share Document