Calculation of Flow in Mixing Vessels With Various Turbulence Models

Volume 4 ◽  
2004 ◽  
Author(s):  
Branislav Basara ◽  
Ales Alajbegovic ◽  
Decan Beader

The paper presents calculations of flow in a mixing vessel stirred by a six-blade Rushton impeller. Mathematical model used in computations is based on the ensemble averaged conservation equations. An efficient finite-volume method based on unstructured grids with rotating sliding parts composed of arbitrary polyhedral elements is used together with various turbulence models. Besides the standard k-ε model which served as a reference, k-ε-v2 model (Durbin, 1995) and the recently proposed hybrid EVM/RSM turbulence model (Basara & Jakirlic, 2003) were used in the calculations. The main aim of the paper is to investigate if more advanced turbulence models are needed for this type of CFD applications. The results are compared with the available experimental data.

2012 ◽  
Vol 572 ◽  
pp. 267-272
Author(s):  
Yi Lun Mao ◽  
Qing Dong Zhang ◽  
Chao Yang Sun ◽  
Xiao Feng Zhang

In this paper, complexity of the process of high temperature alloy tubing extrusion is studied using the Finite Volume Method (FVM). We establish mathematical model of high temperature alloy tube extrusion process by using the Finite Volume Method. We develop the simulation program by the control equation of the Finite Volume Method and numerical simulation of the key technologies of the axisymmetric problem in cylindrical coordinates. Inconel690 high temperature alloy tubing extrusion process, for example, we got the squeeze pressure in the steady-state extrusion, Velocity field and the corresponding equivalent strain rate field. By comparing the results obtained by the finite volume method and simulation results from Finite Element Method (FEM) software on DEFORM-2D, we find our mathematical model on high temperature alloy tubing extrusion process is reasonable and correct.


1970 ◽  
Vol 4 (1) ◽  
pp. 27-42 ◽  
Author(s):  
Md Mahbubar Rahman ◽  
Md. Mashud Karim ◽  
Md Abdul Alim

The dynamic characteristics of the pressure and velocity fields of unsteady incompressible laminar and turbulent wakes behind a circular cylinder are investigated numerically and analyzed physically. The governing equations, written in the velocity pressure formulation are solved using 2-D finite volume method. The initial mechanism for vortex shedding is demonstrated and unsteady body forces are evaluated. The turbulent flow for Re = 1000 & 3900 are simulated using k-? standard, k-? Realizable and k-? SST turbulence models. The capabilities of these turbulence models to compute lift and drag coefficients are also verified. The frequencies of the drag and lift oscillations obtained theoretically agree well with the experimental results. The pressure and drag coefficients for different Reynolds numbers were also computed and compared with experimental and other numerical results. Due to faster convergence, 2-D finite volume method is found very much prospective for turbulent flow as well as laminar flow.Keywords: Viscous unsteady flow, laminar & turbulent flow, finite volume method, circular cylinder.DOI: 10.3329/jname.v4i1.914Journal of Naval Architecture and Marine Engineering 4(2007) 27-42


2021 ◽  
Author(s):  
Yawei Xie ◽  
Michael G. Edwards

Abstract A novel higher resolution spectral volume method coupled with a control-volume distributed multi-Point flux approximation (CVD-MPFA) is presented on unstructured triangular grids for subsurface reservoir simulation. The flow equations involve an essentially hyperbolic convection equation coupled with an elliptic pressure equation resulting from Darcy’s law together with mass conservation. The spectral volume (SV) method is a locally conservative, efficient high-order finite volume method for convective flow. In 2D geometry, the triangular cell is subdivided into sub-cells, and the average state variables in the sub-cells are used to reconstruct a high-order polynomial in the triangular cell. The focus here is on an efficient strategy for reconstruction of both a higher resolution approximation of the convective transport flux and Darcy-flux approximation on sub-cell interfaces, which is also coupled with a discrete fracture model. The strategy involves coupling of the SV method and reconstructed CVD-MPFA fluxes at the faces of the spectral volume, to obtain an efficient finer scale higher resolution finite-volume method which solves for both the saturation and pressure. A limiting procedure based on a Barth-Jespersen type limiter is used to prevent non-physical oscillations on unstructured grids. The fine scale saturation/concentration field is then updated via the reconstructed finite volume approximation over the sub-cell control-volumes. Performance comparisons are presented for two phase flow problems on 2D unstructured meshes including fractures. The results demonstrate that the spectral-volume method achieves further enhanced resolution of flow and fronts in addition to that of achieved by the standard higher resolution method over first order upwind, while improving upon efficiency.


REAKTOR ◽  
2017 ◽  
Vol 5 (1) ◽  
pp. 1
Author(s):  
L. Buchori ◽  
Y. Bindar ◽  
D. Sasongko ◽  
IGBN Makertihartha

Generally, the momentum equation of fluid flow in porous media was solved by neglecting the terms of diffusion and convection such as Ergun, Darcy, Brinkman and Forchheimer models. Their model primarily applied for laminar flow. It is true that these model are limited to condition whether the models can be applied. Analytical solution for the model type above is available only for simple one-dimensional cases. For two or three-dimentional problem, numerical solution is the only solution. This work advances the flow model in porous media and provide two-dimentional flow field solution in porous media, which includes the diffusion and convection terms. The momentum lost due to flow and porous material interaction is modeled using the available  Brinkman-Forchheimer equation. The numerical method to be used is finite volume method. This method is suitable for the characteristic of fluid  flow in porous media which is averaged by a volume base. The effect of the solid and fluid interaction in porous  media is the basic principle of the flow model in morous media. The Brinkman-Forchheimer consider the momentum lost term to be determined by a quadratic function of the velocity component. The momentum and the continuity equation are solved for two-dimentional cylindrical coordinat . the result were validated with the experimental data. The velocity of the porous media was treated to be radially oscillated. The result of velocity profile inside packing show a good agreement in their trend with the Stephenson and Steward experimental data. The local superficial  velocity attains its global maximum and minimum at distances near 0.201 and 0.57 particle diameter, dp. velocity profile below packing was simulated. The result were validated with Schwartz and Smith experimental data. The result also show an excellent agreement with those experimental data.Keywords : finite volume method, porous media, flow distribution, velocity profile


Sign in / Sign up

Export Citation Format

Share Document