Tool wear and energy consumption optimization in EDM of chromium tool steel

Author(s):  
B. Anand ◽  
A. Giri ◽  
C.P. Mohanty ◽  
D. Sharma
Author(s):  
Runjuan Cao ◽  
Yatong Ji ◽  
Taixing Han ◽  
Jingsong Deng ◽  
Liang Zhu ◽  
...  

To enhance the stability and pollutant removal performance of an aerobic granular sludge (AGS), four groups of AGS reactors with different pore sizes of mesh screen (R1 is control reactor,...


2018 ◽  
Vol 2018 ◽  
pp. 1-26
Author(s):  
Ying He ◽  
Jiangping Mei ◽  
Zhiwei Fang ◽  
Fan Zhang ◽  
Yanqin Zhao

Palletizing robot is widely used in logistics operation. At present, people pay attention to not only the loading capacity and working efficiency of palletizing robots, but also the energy consumption in their working process. This paper takes MD1200-YJ palletizing robot as the research object and studies the problem of low energy consumption optimization of joint driving system from the perspective of trajectory optimization. Firstly, a multifactor dynamic model of palletizing robot is established based on the conventional inverse rigid body dynamic model of the robot, the Stribeck friction model and the spring balance torque model. And then based on joint torque, friction torque, motion parameter, and joule’s law, the useful work model, thermal loss model of joint motor, friction energy consumption model of joint system, and total energy consumption model of palletizing robot are established, and through simulation and experiment, the correctness of the multifactor dynamic model and energy consumption model is verified. Secondly, based on the Fourier series approximation method to construct the joint trajectory expression, the minimum total energy consumption as the optimization objective, with coefficients of Fourier series as optimization variables, the motion parameters of initial and final position, and running time constant as constraint conditions, the genetic algorithm is used to solve the optimization problem. Finally, through the simulation analysis the optimized Fourier series motion law and the 3-4-5 polynomial motion law are comprehensively evaluated to verify the effectiveness of the optimization method. Moreover, it provides the theoretical basis for the follow-up research and points out the direction of improvement.


2017 ◽  
Author(s):  
Radim Sojka ◽  
Lubomir Riha ◽  
David Horak ◽  
Jakub Kruzik ◽  
Martin Beseda ◽  
...  

Author(s):  
M. A. Pardo ◽  
Juan Manzano ◽  
Diego García

Due to the fact that irrigation networks are water and energy-hungry and that both resources are scarce, many strategies have been developed to reduce this consumption. Otherwise, solar energy sources have become a green alternative with lower energy costs and, as a consequence, lower environmental impacts. In this work, it is proposed a new methodology to select the scheduled program for irrigation which minimizes the number of photovoltaic solar panels to be installed and which better fits energy consumption (calculated for discrete potential combinations; using a programming software to assist) to available energy obtained by panels without any power conditioning unit. So, the irrigation hours available to satisfy the water demands are limited by sunlight, the schedule type of irrigation has to be rigid (rotation predetermined) and the pressure at any node has to be above the minimum pressure required by standards. A real case study has been performed.


Sign in / Sign up

Export Citation Format

Share Document