Multi-objective optimization of process parameters of Fused Deposition Modeling (FDM) for printing Polylactic Acid (PLA) polymer components

Author(s):  
Pooja Patil ◽  
Dharmendra Singh ◽  
Sunil J. Raykar ◽  
Jaiprakash Bhamu
2021 ◽  
Vol 13 (2) ◽  
pp. 34-38
Author(s):  
Sabit Hasçelik ◽  
◽  
Ömer T. Öztürk ◽  
Sezer Özerinç ◽  
◽  
...  

Fused deposition modeling (FDM) is a widely used additive manufacturing technique for producing polymeric parts. While most commonly used FDM filaments are PLA and ABS, nylon is a widely used thermoplastic polymer in industry. This study investigated the mechanical properties of FDM-produced specimens made of nylon and quantified the effect of process parameters such as raster orientation and nozzle temperature on the mechanical properties. As the nozzle temperature increases, specimens become stronger with higher elongations at the break. This is mainly due to the improved fusion between the layers, provided by an expansion of the heat-affected zone. On the other hand, specimens with diagonal raster orientation exhibit higher elongations than those with perpendicular and parallel raster. The findings also emphasize the synergistic effects between nozzle temperature and printing orientation, showing that optimization should consider the two parameters together. Overall, FDM can produce strong nylon parts with adequate ductility suitable for load-bearing applications. However, achieving such results requires a detailed optimization of process parameters.


In this research, multi objective optimization is done on Fused Deposition Modeling (FDM) printing machine for Polycarbonate/Acrylonitrile Butadiene Styrene (PC/ABS) blend material parts. Reductions in part build time and material consumption without compromising its dimensional accuracy and mechanical properties are the major goals of many industries, because there is need to fulfil one part with multiple qualities. So that in this research, part printed without support structure by controlling five FDM process parameters at three levels such as layer thickness, raster width, extrusion temperature, bed temperature and printing speed by using Taguchi’s design of experiments method (L27 Orthogonal Array). This research can saves part build time, post processing time on support removal and damages occurred due to removal of support structure in part. For that, in this research effects of parameters are studied on surface roughness, build time, and flatness error of overhang structure of parts. Then Grey Relational Analysis (GRA) methodology is used for multi-objective optimization of FDM parameters to find best set of parameters for three responses. Analysis of Variance (ANOVA) is also used to find out significant parameters for multi responses and then confirmation test of experimental results also performed to verify the optimal settings of FDM parameters. The experimental result showed, layer thickness, raster width and part printing speed have the more significant effects on multiple performance characteristics.


Sign in / Sign up

Export Citation Format

Share Document