scholarly journals Optimization Of Process Parameters In 3d Printing-Fused Deposition Modeling Using Taguchi Method

2021 ◽  
Vol 1112 (1) ◽  
pp. 012009
Author(s):  
M Sumalatha ◽  
J N Malleswara Rao ◽  
B Supraja Reddy
2021 ◽  
pp. 026248932110409
Author(s):  
G Radhakrishna ◽  
Rupesh Dugad ◽  
Abhishek Gandhi

In this article, the development of microcellular structure foams has developed by integrating the two successful and existing technologies, namely CO2 gas batch foaming and Fused Deposition Modeling (FDM) 3D printing technique. It is a novel approach to manufacture complex design porous products for customized applications. The eventual cell morphologies of the extruded 3D printing filament depends on the process parameters pertaining to both microcellular foaming and 3D printing processes. Further, morphological study has been conducted to evaluate the cell morphologies of the 3D printing filament developed through customized FDM setup. During this process, the significance of various process parameters including saturation pressure, saturation time, desorption time, feed rate and extrusion temperature were thoroughly studied. To pursue this study base material used was acrylonitrile butadiene styrene (ABS). The 3D printed filaments consisted of cells with an average cell size in the range of 2.3–276 µm and the average cell density in the range of 4.7 × 104 to 4.3 × 109 cells/cm3. Finally, it has found that by controlling the process parameters different cell morphologies can be developed as per the end application.


2020 ◽  
Vol 863 ◽  
pp. 103-108
Author(s):  
Tran Anh Son ◽  
Pham Son Minh ◽  
Trung Do Thanh

3D printing is a promising digital manufacturing technique that manufactures product parts in a layer fashion. Fused deposition modeling (FDM) is a widely used 3D printing technique that produces components by heating, extruding, and depositing the filaments of thermoplastic polymers. Meanwhile, the properties of FDM-produced parts are significantly influenced by process parameters. These process parameters have different advantages that need to be investigated. This paper examines the effect of some process parameters on the tensile properties of some components produced using FDM technique. The study is performed on polylactic acid (PLA) material, using full factorial experimental design. Furthermore, three process parameter—material, infill density, and infill pattern—are considered. The results indicate that only the infill pattern significantly influences the tensile properties of the model.


2021 ◽  
Vol 13 (2) ◽  
pp. 34-38
Author(s):  
Sabit Hasçelik ◽  
◽  
Ömer T. Öztürk ◽  
Sezer Özerinç ◽  
◽  
...  

Fused deposition modeling (FDM) is a widely used additive manufacturing technique for producing polymeric parts. While most commonly used FDM filaments are PLA and ABS, nylon is a widely used thermoplastic polymer in industry. This study investigated the mechanical properties of FDM-produced specimens made of nylon and quantified the effect of process parameters such as raster orientation and nozzle temperature on the mechanical properties. As the nozzle temperature increases, specimens become stronger with higher elongations at the break. This is mainly due to the improved fusion between the layers, provided by an expansion of the heat-affected zone. On the other hand, specimens with diagonal raster orientation exhibit higher elongations than those with perpendicular and parallel raster. The findings also emphasize the synergistic effects between nozzle temperature and printing orientation, showing that optimization should consider the two parameters together. Overall, FDM can produce strong nylon parts with adequate ductility suitable for load-bearing applications. However, achieving such results requires a detailed optimization of process parameters.


2017 ◽  
Vol 20 (K5) ◽  
pp. 37-43
Author(s):  
Nghi Huu Huynh ◽  
Ton Minh Tran ◽  
Tho Huu Nguyen ◽  
Ha Thi Thu Thai

Nowadays, 3D Printing Technology, also known as AM - Additive Manufacturing plays an important role in the 4.0 industrial revolution. In 3D printing technologies, FDM (Fused Deposition Modeling) technology is the most popular technology. In general, the quality of AM products and FDM depend on the process parameters. The article addressed the issue of optimizing process parameters to improve the compressive strength of the product. The parameters are considered as the fill pattern, fill density, number of contours, layer thickness and raster angle. The experimental design based on the Taguchi method is employed to identify the optimum process parameters. In addition, ANOVA is also utilized to evaluate the effect of each parameter on the compressive strength of the product.


Materials ◽  
2020 ◽  
Vol 13 (12) ◽  
pp. 2718 ◽  
Author(s):  
Yury V. Dontsov ◽  
Sergey V. Panin ◽  
Dmitry G. Buslovich ◽  
Filippo Berto

It is believed that the structure and properties of parts fabricated by additive (i.e., non-stationary) manufacturing are slightly worse compared to hot pressing. To further proceed with improving the quality of Fused Deposition Modeling 3D-printed parts, the ‘UHMWPE + 17 wt.% HDPE-g-SMA + 12 wt.% PP’ composite feedstock fabrication parameters, by the twin-screw extruder compounding and 3D printing (the Fused Deposition Modeling (FDM) process), were optimized using the Taguchi method. The optimization was carried out over the results of mechanical tests. The obtained results were interpreted in terms of (1) the uniformity of mixing of the polymer components upon compounding and (2) the homogeneity of the structure formed by the 3D printing. The values of the main factors (the processing parameters) were determined using the Taguchi method. Their application made it possible to improve the physical, mechanical, and tribological properties of the samples manufactured by the FDM method at the level of neat UHMWPE as well as the UHMWPE-based composites fabricated by compression sintering. A comparative analysis of the structure, as well as the mechanical and tribological properties of the composite obtained by the FDM method, and the hot pressing from ‘optimized’ feedstock was performed. The ‘UHMWPE + 17 wt.% HDPE-g-SMA + 12 wt.% PP’ composites fabricated by the optimal compounding and 3D printing parameters can be implemented for the additive manufacturing of complex shape products (including medical implants, transport, mining, and processing industries; in particular, in the Far North).


Sign in / Sign up

Export Citation Format

Share Document