Effect of graphene oxide on fresh, hardened and mechanical properties of cement mortar

Author(s):  
Keerthipati Sreeja ◽  
T. Naresh Kumar
2014 ◽  
Vol 2014 ◽  
pp. 1-10 ◽  
Author(s):  
Fakhim Babak ◽  
Hassani Abolfazl ◽  
Rashidi Alimorad ◽  
Ghodousi Parviz

We investigate the performance of graphene oxide (GO) in improving mechanical properties of cement composites. A polycarboxylate superplasticizer was used to improve the dispersion of GO flakes in the cement. The mechanical strength of graphene-cement nanocomposites containing 0.1–2 wt% GO and 0.5 wt% superplasticizer was measured and compared with that of cement prepared without GO. We found that the tensile strength of the cement mortar increased with GO content, reaching 1.5%, a 48% increase in tensile strength. Ultra high-resolution field emission scanning electron microscopy (FE-SEM) used to observe the fracture surface of samples containing 1.5 wt% GO indicated that the nano-GO flakes were well dispersed in the matrix, and no aggregates were observed. FE-SEM observation also revealed good bonding between the GO surfaces and the surrounding cement matrix. In addition, XRD diffraction data showed growth of the calcium silicate hydrates (C-S-H) gels in GO cement mortar compared with the normal cement mortar.


Nanomaterials ◽  
2020 ◽  
Vol 10 (1) ◽  
pp. 113 ◽  
Author(s):  
Hongfang Sun ◽  
Li Ling ◽  
Zhili Ren ◽  
Shazim Ali Memon ◽  
Feng Xing

This paper evaluated the effect of graphene oxide/graphene (GO/GR) hybrid on mechanical properties of cement mortar. The underlying mechanism was also investigated. In the GO/GR hybrid, GO was expected to act as a dispersant for GR while GR was used as reinforcement in mortar due to its excellent mechanical properties. For the mortar specimen, flexural and compressive strength were measured at varied GO to GR ratios of 1:0, 3:1, 1:1, 1:3, and 0:1 by keeping the total amount of GO and GR constant. The underlying mechanism was investigated through the dispersibility of GR, heat releasing characteristics during hydration, and porosity of mortar. The results showed that GO/GR hybrid significantly enhanced the flexural and compressive strength of cement mortars. The flexural strength reached maximum at GO:GR = 1:1, where the enhancement level was up to 23.04% (28 days) when compared to mortar prepared with only GO, and up to 15.63% (7 days) when compared to mortar prepared with only GR. In terms of compressive strength, the enhancement level for GO:GR = 3:1 was up to 21.10% (3 days) when compared with that of mortar incorporating GO only. The enhancement in compressive strength with mortar at GO:GR = 1:1 was up to 14.69% (7-day) when compared with mortar incorporating GR only. In addition to dispersibility, the compressive strength was also influenced by other factors, such as the degree of hydration, porosity, and pore size distribution of mortar, which made the mortars perform best at different ages.


Author(s):  
A. Gholampour ◽  
M. Valizadeh Kiamahalleh ◽  
D. N. H. Tran ◽  
T. Ozbakkaloglu ◽  
D. Losic

2017 ◽  
Vol 25 (15-16) ◽  
pp. 1313-1322 ◽  
Author(s):  
Xiangyu Li ◽  
Chenyang Li ◽  
Yanming Liu ◽  
Shu Jian Chen ◽  
C. M. Wang ◽  
...  

RSC Advances ◽  
2017 ◽  
Vol 7 (87) ◽  
pp. 55148-55156 ◽  
Author(s):  
Aliakbar Gholampour ◽  
Meisam Valizadeh Kiamahalleh ◽  
Diana N. H. Tran ◽  
Togay Ozbakkaloglu ◽  
Dusan Losic

This paper presents a comprehensive study to evaluate the influence of graphene oxide (GO) concentration on the physiochemical and mechanical properties of cement mortar composites.


2020 ◽  
Vol 38 (10A) ◽  
pp. 1522-1530
Author(s):  
Rawnaq S. Mahdi ◽  
Aseel B. AL-Zubidi ◽  
Hassan N. Hashim

This work reports on the incorporation of Flint and Kaolin rocks powders in the cement mortar in an attempt to improve its mechanical properties and produce an eco-friendly mortar. Flint and Kaolin powders are prepared by dry mechanical milling. The two powders are added separately to the mortars substituting cement partially. The two powders are found to improve the mechanical properties of the mortars. Hardness and compressive strength are found to increase with the increase of powders constituents in the cement mortars. In addition, the two powders affect water absorption and thermal conductivity of the mortar specimens which are desirable for construction applications. Kaolin is found to have a greater effect on the mechanical properties, water absorption, and thermal conductivity of the mortars than Flint. This behavior is discussed and analyzed based on the compositional and structural properties of the rocks powders.


Sign in / Sign up

Export Citation Format

Share Document