calcium silicate hydrates
Recently Published Documents


TOTAL DOCUMENTS

268
(FIVE YEARS 59)

H-INDEX

43
(FIVE YEARS 5)

2022 ◽  
Vol 153 ◽  
pp. 106655
Author(s):  
Roberto Murillo Alarcón ◽  
Tobias Hertel ◽  
Elise François ◽  
Hubert Rahier ◽  
Yiannis Pontikes

2022 ◽  
Vol 152 ◽  
pp. 106685
Author(s):  
Yang Zhou ◽  
Haojie Zheng ◽  
Weihuan Li ◽  
Tao Ma ◽  
Changwen Miao

2021 ◽  
Vol 50 (11) ◽  
pp. 3181-3191
Author(s):  
Ghasem Norouznejad ◽  
Issa Shooshpasha ◽  
Seyed Mohammad Mirhosseini ◽  
Mobin Afzalirad

It is well known that in geotechnical engineering, soil stabilization using cement is one of the appropriate approaches for enhancing soil characteristics. With respect to zeolite, its impact on the characteristics of cemented soil has not been fully evaluated. Thus, in the current research, a set of laboratory tests including standard Proctor compaction and direct shear tests (DSTs) considering four cement contents (2, 4, 6, and 8% of sand dry weight) and four zeolite contents (0%, 30%, 60%, and 90% of cement percentage as a replacement material) was carried out. The results indicated that the zeolite reduced Maximum Dry Density (MDD) while it increased value of Optimum Moisture Content (OMC) of cemented sand. Through the DSTs, it has been found that the replacement of cement by zeolite up to 30%, leads to the highest values of shear strength parameters due to the occurrence of pozzolanic and chemical reactions, particularly the production of higher amounts of calcium aluminate and calcium silicate hydrates in comparison with zeolite-free samples.


Crystals ◽  
2021 ◽  
Vol 11 (12) ◽  
pp. 1450
Author(s):  
Natt Makul

The single most important structural material, and the major Portland cement binding phase in application globally, is calcium silicate hydrate (C-S-H). The concentration has increasingly changed due to its atomic level comprehension because of the chemistry and complex structures of internal C-S-H cohesion in cement crystals at different lengths. This perspective aimed at describing on calcium-silicate-hydrates (C-S-H) structures with differing contents of Ca/Si ratio based on the report entitled “Quantum mechanical metric for internal cohesion in cement crystals” published by C. C. Dharmawardhana, A. Misra and Wai-Yim Ching. Crystal structural and bond behaviors in synthesized C-S-H were also discussed. The investigator studied large subset electronic structures and bonding of the common C-S-H minerals. From each bonding type, the results and findings show a wide variety of contributions, particularly hydrogen bonding, that allow critical analyses of spectroscopic measurement and constructions of practical C-S-H models. The investigator found that the perfect overall measurement for examining crystal cohesions of the complex substances is the total bond density (TBOD), which needs to be substituted for traditional metrics such as calcium to silicon ratios. In comparison to Tobermorite and Jennite, hardly known orthorhombic phased Suolunites were revealed to have greater cohesion and total order distribution density than those of the hydrated Portland cement backbone. The findings of the perspective showed that utilizing quantum mechanical metrics, the total bond orders and total bond order distributions are the most vital criteria for assessing the crystalline cohesions in C-S-H crystals. These metrics encompass effects of both interatomic interactions and geometric elements. Thus, the total bond order distribution and bond order offer comprehensive and in-depth measures for the overall behaviors of these diverse groups of substances. The total bond order distributions must clearly be substituted for the conventional and longstanding Ca/Si ratios applied in categorizing the cement substances. The inconspicuous Suolunite crystals were found to have the greatest total bond order distributions and the perfect bonding characteristics, compositions, and structures for cement hydrates.


2021 ◽  
Vol 19 (10) ◽  
pp. 1061-1074
Author(s):  
Sayuri Tomita ◽  
Kazuko Haga ◽  
Yoshifumi Hosokawa ◽  
Kazuo Yamada ◽  
Go Igarashi ◽  
...  

2021 ◽  
Vol 325 ◽  
pp. 28-33
Author(s):  
Konstantinos Sotiriadis ◽  
Michal Hlobil

Portland-limestone cement materials are susceptible to sulfate attack at low temperature and high humidity, because such conditions facilitate the formation of thaumasite, detriment to the structural integrity of calcium silicate hydrates (C─S─H). In this work, the effect of the cation associated with sulfates, concentration of sulfate solution, and limestone content in cement, were thermodynamically simulated. MgSO4 solution is of higher risk, degrading extensively the structural integrity of C─S─H. Although this phase is partially preserved under the effect of Na2SO4 and K2SO4 solutions, extensive expansion and thaumasite formation occur. The sulfate content of the corrosive solution and the limestone content in cement are the factors mostly intensifying the attack caused by MgSO4 and Na2SO4/K2SO4 solutions, respectively.


2021 ◽  
Vol 325 ◽  
pp. 21-27
Author(s):  
Grigory Ivanovich Yakovlev ◽  
Rostislav Drochytka ◽  
Valery Grakhov ◽  
Zarina S. Saidova ◽  
Irina Sergeevna Polyanskikh ◽  
...  

The article describes the influence of chrysotile nanofibers dispersion introduction on the properties of the cement matrix. Comparison of the dispersion level of suspensions obtained using cavitation and ultrasonic processing methods is presented. The positive effect of chrysotile fibers application on the strength characteristics of the material has been confirmed. A 34% increase in the compressive strength of the samples was achieved on the 7th day of hardening, while on the 28th day it increased by 36% and with the steam treatment - by 38% compared to the reference sample. Laser particle size analysis confirmed the predominance of the nanosized component of chrysotile fibers in the suspension, which affected the structuring of the cement matrix. The results of the differential thermography, IR spectrometry, X-ray microanalysis and scanning electron microscopy of the samples are also presented. The analysis methods confirmed that introduction of chrysotile nanofibers suspension into the composition of a cement binder makes it possible to significantly vary the structure and morphology of new formations in fine-grained concrete. It also changes the quantitative and qualitative phase composition of the material with the formation of calcium silicate hydrates of lower basicity, leading to an increase in the strength of cement concrete.


Materials ◽  
2021 ◽  
Vol 14 (19) ◽  
pp. 5610
Author(s):  
Carmen-Lidia Oproiu ◽  
Georgeta Voicu ◽  
Alina Bădănoiu ◽  
Adrian-Ionuţ Nicoară

The aim of this study is to assess the possibility to solidify/stabilize a liquid waste from a municipal waste landfill using binders based on coal ash (fly ash and bottom ash) and specially designed cements for waste treatment (INERCEM). The leaching test proved that all cementitious systems are efficient for the solidification/stabilization of the studied wastes and can reduce the leaching potential of heavy metals present in both liquid waste and coal ash. Therefore, these wastes cease to be a source of environmental pollution. X-ray diffraction (XRD) and thermal complex analysis (DTA-TG) were used to assess the nature and amount of compounds formed in these cementitious systems during the hydration and hardening processes; ettringite, calcium silicate hydrates and CaCO3 were the main compounds formed in these systems assessed by these methods. The microstructure of hardened specimens was assessed by scanning electronic microscopy (SEM); the presence of hydrate phases, at the surface of cenospheres present in fly ash, proved the high pozzolanic reactivity of this phase.


Materials ◽  
2021 ◽  
Vol 14 (19) ◽  
pp. 5592
Author(s):  
Raimundas Siauciunas ◽  
Giedrius Smalakys ◽  
Tadas Dambrauskas

In this work, the suitability of natural raw materials with various modifications of SiO2—granite sawing waste (quartz) and opoka (a mixture of cristobalite, tridymite, quartz, and an amorphous part)—for the 1.13 nm tobermorite and xonotlite synthesis is examined, and their specific surface area, pore diameter and volume, and the predominant pores are determined. Hydrothermal syntheses were carried out at 200 °C for 12 and 72 h from mixtures with a molar ratio of CaO/SiO2 = 1.0. X-ray diffraction analysis, simultaneous thermal analysis, and scanning electronic microscopy were used, which showed that in the lime–calcined opoka mixture the formation of crystalline calcium silicate hydrates takes place much faster than in the lime–granite sawing waste mixture. The high reactivity of amorphous SiO2 results in the rapid formation of 1.13 nm tobermorite and xonotlite (12 h). According to Brunauer, Emmet and Taller (BET) analysis data, this product features a specific surface area of ~68 m2/g, a total pore volume of 245·10−3 cm3/g, and has dominating 1–2.5 nm and 5–20 nm diameter pores. This porosity of the material should provide good thermal insulation properties of the products made from it as no air convection occurs in the fine pores.


Sign in / Sign up

Export Citation Format

Share Document