Vibration response-based condition monitoring and fault diagnosis of rotary machinery

Author(s):  
Chirag Mongia ◽  
Deepam Goyal ◽  
Shankar Sehgal
Author(s):  
Wenbing Tu ◽  
Jinwen Yang ◽  
Wennian Yu ◽  
Ya Luo

The vibration response of rolling element bearing has a close relation with its fault. An accurate evaluation of the bearing vibration response is essential to the bearing fault diagnosis. At present, most bearing dynamics models are built based on rigid assumptions, which may not faithfully reveal the dynamic characteristics of bearing in the presence of fault. Moreover, previous similar works mainly focus on the fault with a specified size without considering the varying contact characteristics as the fault evolves. This paper developed an explicit dynamics finite element model for the bearing with three types of raceway faults considering the flexibility of each bearing component in order to accurately study the contact characteristic and vibration mechanism of defective bearings in the process of fault evolution. The developed model is validated by comparing its simulation results with both analytical and experimental results. The dynamic contact patterns between the rolling elements and the fault, the additional displacement due to the fault and the faulty characteristics within the bearing vibration signal during the fault evolution process are investigated. The analysis results from this work can provide practitioners an in-depth understanding towards the internal contact characteristics with the existence of raceway fault and theoretical basis for rolling bearing fault diagnosis.


Author(s):  
Zhang Chao ◽  
Wang Wei-zhi ◽  
Zhang Chen ◽  
Fan Bin ◽  
Wang Jian-guo ◽  
...  

Accurate and reliable fault diagnosis is one of the key and difficult issues in mechanical condition monitoring. In recent years, Convolutional Neural Network (CNN) has been widely used in mechanical condition monitoring, which is also a great breakthrough in the field of bearing fault diagnosis. However, CNN can only extract local features of signals. The model accuracy and generalization of the original vibration signals are very low in the process of vibration signal processing only by CNN. Based on the above problems, this paper improves the traditional convolution layer of CNN, and builds the learning module (local feature learning block, LFLB) of the local characteristics. At the same time, the Long Short-Term Memory (LSTM) is introduced into the network, which is used to extract the global features. This paper proposes the new neural network—improved CNN-LSTM network. The extracted deep feature is used for fault classification. The improved CNN-LSTM network is applied to the processing of the vibration signal of the faulty bearing collected by the bearing failure laboratory of Inner Mongolia University of science and technology. The results show that the accuracy of the improved CNN-LSTM network on the same batch test set is 98.75%, which is about 24% higher than that of the traditional CNN. The proposed network is applied to the bearing data collection of Western Reserve University under the condition that the network parameters remain unchanged. The experiment shows that the improved CNN-LSTM network has better generalization than the traditional CNN.


2005 ◽  
Vol 293-294 ◽  
pp. 365-372 ◽  
Author(s):  
Yong Yong He ◽  
Wen Xiu Lu ◽  
Fu Lei Chu

The steam turboset is the key equipment of the electric power system. Thus, it is very important and necessary to monitor and diagnose the running condition and the faults of the steam turboset for the safe and normal running of the electric power system. In this paper, the Internet/Intranet based remote condition monitoring and fault diagnosis scheme is proposed. The corresponding technique and methods are discussed in detail. And a real application system is developed for the 300MW steam turboset. In this scheme, the system is built on the Internet/Intranet and the Client/Server construction and Web/Server model are adopted. The proposed scheme can guarantee real-time data acquisition and on-line condition analysis simultaneously. And especially, the remote condition monitoring and fault diagnosis can be implemented effectively. The developed system has been installed in a power plant of China. And the plant has obtained great economic benefits from it.


Sign in / Sign up

Export Citation Format

Share Document