Generalized distribution-moment approximation for kinetic theories of muscular contraction

2020 ◽  
Vol 329 ◽  
pp. 108455
Author(s):  
Graham M. Donovan
2021 ◽  
Vol 10 (1) ◽  
pp. 101-111
Author(s):  
Rehman Ullah ◽  
Sumaira Shah ◽  
Zahir Muhammad ◽  
Sajjad Ali Shah ◽  
Shah Faisal ◽  
...  

Abstract The current study was designed to investigate the potential of Euphorbia wallichii shoot extract for reducting Au3+ and stabilizing gold nanoparticles. UV-visible spectra of gold nanoparticles showed obvious surface plasmon resonance peak at 548 nm. Microscopy (SEM and TEM) showed spherical dimensions, and the energy dispersive X-ray spectra displayed the strongest optical absorption peak for gold (Au) at 2.1 keV. Dynamic light scattering spectra represent polydispersed mixture with particulate diameter of 2.5–103.2 nm. The IR spectra confirm the potential functional groups of shoot extract responsible for the reduction of Au3+ to gold nanoparticles which exhibit tremendous antibacterial potential of 76.31%, 68.47%, 79.85%, 48.10%, and 65.53% against Escherichia coli, Staphylococcus aureus, Bacillus pumilus, Pseudomonas aeruginosa, and Klebsiella pneumoniae, respectively. Gold nanoparticles showed markedly elevated fungicidal potency compared to the shoot extract alone against the tested fungal strains. IC50 for 2,2-diphenyl-1-picrylhydrazyl scavenging was 31.52, 18.29, and 15.32 µg/mL at 30, 60, and 90 min of reaction time, respectively. Both shoot extract and nanoparticles revealed 71% mortality at 100 µg/mL, with LD90 values of 310.56 µg/mL. Experimental mice acquired dose-dependent analgesia of 54.21%, 82.60%, and 86.53% when treated with gold nanoparticles at 50, 100, and 200 mg/kg bw. Inhibition of gastrointestinal muscular contraction was 21.16%, 30.49%, and 40.19% in mice feed with 50, 100, and 200 mg/kg bw, respectively.


2020 ◽  
Vol 11 (1) ◽  
pp. 307
Author(s):  
Carla Stecco ◽  
Carmelo Pirri ◽  
Caterina Fede ◽  
Can A. Yucesoy ◽  
Raffaele De Caro ◽  
...  

Stretching exercises are integral part of the rehabilitation and sport. Despite this, the mechanism behind its proposed effect remains ambiguous. It is assumed that flexibility increases, e.g., action on muscle and tendon, respectively, but this is not always present in the stretching protocol of the exercises used. Recently, the fasciae have increased popularity and seems that they can have a role to define the flexibility and the perception of the limitation of the maximal range of motion (ROM). Deep fascia is also considered a key element to transmit load in parallel bypassing the joints, transmitting around 30% of the force generated during a muscular contraction. So, it seems impossible dividing the action of the muscles from the fasciae, but they have to be considered as a “myofascial unit”. The purpose of this manuscript is to evaluate the mechanical behavior of muscles, tendons, and fasciae to better understand how they can interact during passive stretching. Stress-strain values of muscle, tendon and fascia demonstrate that during passive stretching, the fascia is the first tissue that limit the elongation, suggesting that fascial tissue is probably the major target of static stretching. A better understanding of myofascial force transmission, and the study of the biomechanical behavior of fasciae, with also the thixotropic effect, can help to design a correct plan of stretching.


In a comparison of muscles poisoned with mono-iodo-acetic acid (IAA) in the presence and in the absence of oxygen respectively, Lundsgaard (1930) found:- (1) That the spontaneous breakdown of phosphagen in poisoned resting muscle is much more rapid under anaerobic conditions. (2) That the onset of the characteristic contracture produced by IAA is accompanied always by an increase in the rate of oxygen consumption.


Sign in / Sign up

Export Citation Format

Share Document