Stimulation of human omental adipose tissue lipolysis by growth hormone plus dexamethasone

2008 ◽  
Vol 295 (1-2) ◽  
pp. 101-105 ◽  
Author(s):  
John N. Fain ◽  
Paramjeet Cheema ◽  
David S. Tichansky ◽  
Atul K. Madan
2010 ◽  
Vol 315 (1-2) ◽  
pp. 292-298 ◽  
Author(s):  
John N. Fain ◽  
Paramjeet Cheema ◽  
Atul K. Madan ◽  
David S. Tichansky

1988 ◽  
Vol 254 (3) ◽  
pp. 661-665 ◽  
Author(s):  
V A Zammit

1. Rates of lipolysis were measured at different concentrations of glucagon in adipocytes prepared from parametrial adipose tissue of fed or starved rats in different reproductive states. All experiments were performed in the presence of a high concentration of adenosine deaminase (1 unit/ml). 2. Maximal rates of lipolysis (elicited by 25 nM-glucagon in each instance) were higher in adipocytes from peak-lactating rats than those from pregnant animals in both the fed and starved states. 3. Of adipocytes from fed animals, those from peak-lactating rats were the most sensitive to glucagon, whereas those from late-pregnant and early-lactating rats were 1-2 orders of magnitude less sensitive. 4. Adipocytes from 24 h-starved rats showed a much smaller stimulation of lipolysis by glucagon, making the assessment of sensitivity difficult. Therefore, rates of lipolysis were also measured in the presence of a maximally anti-lipolytic dose of insulin. The presence of insulin did not alter the relative sensitivities to glucagon of adipocytes from fed animals in different reproductive states, although all dose-response curves were shifted to the right. When lipolysis in adipocytes from starved animals was measured in the presence of insulin, it became evident that starvation for 24 h markedly increased the sensitivity of adipocytes from late-pregnant rats to glucagon, but did not affect that of cells from animals in the other reproductive states. 5. It is concluded that the large changes in sensitivity to glucagon that occurred during the reproductive cycle may enable the modulation of adipose-tissue lipolysis in vivo to satisfy the different metabolic requirements of the animal in the transition from pregnancy to peak lactation.


1997 ◽  
Vol 152 (3) ◽  
pp. 465-475 ◽  
Author(s):  
K L Houseknecht ◽  
D E Bauman

To investigate the cellular mechanisms of somatotropin (ST) action on adipose tissue lipolysis, experiments were conducted using adipose tissue taken from lactating cows treated with excipient or ST (40 mg/day). Stimulation of lipolysis in vitro by the effectors isoproterenol with or without adenosine deaminase, dibutyryl cAMP with or without isobutylmethylxanthine, and forskolin was not altered by ST treatment. Conversely, the response to the antilipolytic effector, phenylisopropyladenosine (PIA), was significantly reduced in adipose tissue explants from ST or fasted cows. The different responses to adrenergic-stimulating agents (in vivo) and PIA (in vitro) were not due to differences in the abundance of α, β or γ subunits of the stimulatory (Gs) and inhibitory (Gi) subunits of the heterotrimeric G-proteins which bind to the β-adrenergic and adenosine receptors respectively. However, the functionality of Gi proteins, as assessed by their ability to be ADP-ribosylated by pertussis toxin, was significantly reduced in ST-treated but not fasted cows. These data highlight differential regulation of signaling proteins by ST and fasting, both of which result in enhanced in vivo response to adrenergic stimulation of lipolysis. Journal of Endocrinology (1997) 152, 465–475


Metabolism ◽  
2008 ◽  
Vol 57 (7) ◽  
pp. 1005-1015 ◽  
Author(s):  
John N. Fain ◽  
Ben Buehrer ◽  
Suleiman W. Bahouth ◽  
David S. Tichansky ◽  
Atul K. Madan

Sign in / Sign up

Export Citation Format

Share Document