scholarly journals Symmetries, first integrals and phase planes of a third-order ordinary differential equation from thin film flow

2009 ◽  
Vol 49 (1-2) ◽  
pp. 215-225 ◽  
Author(s):  
E. Momoniat
2013 ◽  
Vol 2013 ◽  
pp. 1-7 ◽  
Author(s):  
M. Mechee ◽  
N. Senu ◽  
F. Ismail ◽  
B. Nikouravan ◽  
Z. Siri

In this paper, a three-stage fifth-order Runge-Kutta method for the integration of a special third-order ordinary differential equation (ODE) is constructed. The zero stability of the method is proven. The numerical study of a third-order ODE arising in thin film flow of viscous fluid in physics is discussed. The mathematical model of thin film flow has been solved using a new method and numerical comparisons are made when the same problem is reduced to a first-order system of equations which are solved using the existing Runge-Kutta methods. Numerical results have clearly shown the advantage and the efficiency of the new method.


2020 ◽  
Vol 27 (4) ◽  
pp. 593-603 ◽  
Author(s):  
Kemal Özen

AbstractIn this work, the solvability of a generally nonlocal problem is investigated for a third order linear ordinary differential equation with variable principal coefficient. A novel adjoint problem and Green’s functional are constructed for a completely nonhomogeneous problem. Several illustrative applications for the theoretical results are provided.


Sign in / Sign up

Export Citation Format

Share Document