scholarly journals A Three-Stage Fifth-Order Runge-Kutta Method for Directly Solving Special Third-Order Differential Equation with Application to Thin Film Flow Problem

2013 ◽  
Vol 2013 ◽  
pp. 1-7 ◽  
Author(s):  
M. Mechee ◽  
N. Senu ◽  
F. Ismail ◽  
B. Nikouravan ◽  
Z. Siri

In this paper, a three-stage fifth-order Runge-Kutta method for the integration of a special third-order ordinary differential equation (ODE) is constructed. The zero stability of the method is proven. The numerical study of a third-order ODE arising in thin film flow of viscous fluid in physics is discussed. The mathematical model of thin film flow has been solved using a new method and numerical comparisons are made when the same problem is reduced to a first-order system of equations which are solved using the existing Runge-Kutta methods. Numerical results have clearly shown the advantage and the efficiency of the new method.

2016 ◽  
Vol 13 (06) ◽  
pp. 1650037
Author(s):  
Carlos A. Vega ◽  
Francisco Arias

In this work, we apply adaptive multiresolution (Harten’s approach) characteristic-wise fifth-order Weighted Essentially Non-Oscillatory (WENO) for computing the numerical solution of a polydisperse sedimentation model, namely, the Höfler and Schwarzer model. In comparison to other related works, time discretization is carried out with the ten-stage fourth-order strong stability preserving Runge–Kutta method which is more efficient than the widely used optimal third-order TVD Runge–Kutta method. Numerical results with errors, convergence rates and CPU times are included for four and 11 species.


2013 ◽  
Vol 2013 ◽  
pp. 1-9 ◽  
Author(s):  
Yanwei Zhang ◽  
Haitao Che ◽  
Yonglei Fang ◽  
Xiong You

A new trigonometrically fitted fifth-order two-derivative Runge-Kutta method with variable nodes is developed for the numerical solution of the radial Schrödinger equation and related oscillatory problems. Linear stability and phase properties of the new method are examined. Numerical results are reported to show the robustness and competence of the new method compared with some highly efficient methods in the recent literature.


SIMULATION ◽  
1968 ◽  
Vol 10 (5) ◽  
pp. 221-223 ◽  
Author(s):  
A.S. Chai

It is possible to replace k2 in a 4th-order Runge-Kutta for mula (also Nth-order 3 ≤ N ≤ 5) by a linear combination of k1 and the ki's in the last step, using the same procedure for computing the other ki's and y as in the standard R-K method. The advantages of the new method are: It re quires one less derivative evaluation, provides an error estimate at each step, gives more accurate results, and needs a minor change to switch to the RK to obtain the starting values. Experimental results are shown in verification of the for mula.


Sign in / Sign up

Export Citation Format

Share Document