Three-dimensional point cloud data subtle feature extraction algorithm for laser scanning measurement of large-scale irregular surface in reverse engineering

Measurement ◽  
2020 ◽  
Vol 151 ◽  
pp. 107220 ◽  
Author(s):  
Yi Yang ◽  
Hairong Fang ◽  
Yuefa Fang ◽  
Shijian Shi
2019 ◽  
Vol 8 (8) ◽  
pp. 343 ◽  
Author(s):  
Li ◽  
Hasegawa ◽  
Nii ◽  
Tanaka

Digital archiving of three-dimensional cultural heritage assets has increased the demand for visualization of large-scale point clouds of cultural heritage assets acquired by laser scanning. We proposed a fused transparent visualization method that visualizes a point cloud of a cultural heritage asset in an environment using a photographic image as the background. We also proposed lightness adjustment and color enhancement methods to deal with the reduced visibility caused by the fused visualization. We applied the proposed method to a laser-scanned point cloud of a high-valued cultural festival float with complex inner and outer structures. Experimental results demonstrate that the proposed method enables high-quality transparent visualization of the cultural asset in its surrounding environment.


Author(s):  
Y. Hori ◽  
T. Ogawa

The implementation of laser scanning in the field of archaeology provides us with an entirely new dimension in research and surveying. It allows us to digitally recreate individual objects, or entire cities, using millions of three-dimensional points grouped together in what is referred to as "point clouds". In addition, the visualization of the point cloud data, which can be used in the final report by archaeologists and architects, should usually be produced as a JPG or TIFF file. Not only the visualization of point cloud data, but also re-examination of older data and new survey of the construction of Roman building applying remote-sensing technology for precise and detailed measurements afford new information that may lead to revising drawings of ancient buildings which had been adduced as evidence without any consideration of a degree of accuracy, and finally can provide new research of ancient buildings. We used laser scanners at fields because of its speed, comprehensive coverage, accuracy and flexibility of data manipulation. Therefore, we “skipped” many of post-processing and focused on the images created from the meta-data simply aligned using a tool which extended automatic feature-matching algorithm and a popular renderer that can provide graphic results.


2016 ◽  
Vol 31 (9) ◽  
pp. 889-896
Author(s):  
马鑫 MA Xin ◽  
魏仲慧 WEI Zhong-hui ◽  
何昕 HE Xin ◽  
于国栋 YU Guo-dong

Author(s):  
I. Selvaggi ◽  
M. Dellapasqua ◽  
F. Franci ◽  
A. Spangher ◽  
D. Visintini ◽  
...  

Terrestrial remote sensing techniques, including both Terrestrial Laser Scanning (TLS) and Close-Range Photogrammetry (CRP), have been recently used in multiple applications and projects with particular reference to the documentation/inspection of a wide variety of Cultural Heritage structures.<br> The high density of TLS point cloud data allows to perform structure survey in an unprecedented level of detail, providing a direct solution for the digital three-dimensional modelling, the site restoration and the analysis of the structural conditions. Textural information provided by CRP can be used for the photorealistic representation of the surveyed structure. With respect to many studies, the combination of TLS and CRP techniques produces the best results for Cultural Heritage documentation purposes. Moreover, TLS and CRP point cloud data have been proved to be useful in the field of deformation analysis and structural health monitoring. They can be the input data for the Finite Element Method (FEM), providing some prior knowledge concerning the material and the boundary conditions such as constraints and loading.<br> The paper investigates the capabilities and advantages of TLS and CRP data integration for the three-dimensional modelling compared to a simplified geometric reconstruction. This work presents some results concerning the Baptistery of Aquileia in Italy, characterized by an octagonal plan and walls composed by masonry stones with good texture.


Author(s):  
A. Nurunnabi ◽  
Y. Sadahiro ◽  
R. Lindenbergh

This paper investigates the problems of cylinder fitting in laser scanning three-dimensional Point Cloud Data (PCD). Most existing methods require full cylinder data, do not study the presence of outliers, and are not statistically robust. But especially mobile laser scanning often has incomplete data, as street poles for example are only scanned from the road. Moreover, existence of outliers is common. Outliers may occur as random or systematic errors, and may be scattered and/or clustered. In this paper, we present a statistically robust cylinder fitting algorithm for PCD that combines Robust Principal Component Analysis (RPCA) with robust regression. Robust principal components as obtained by RPCA allow estimating cylinder directions more accurately, and an existing efficient circle fitting algorithm following robust regression principles, properly fit cylinder. We demonstrate the performance of the proposed method on artificial and real PCD. Results show that the proposed method provides more accurate and robust results: (i) in the presence of noise and high percentage of outliers, (ii) for incomplete as well as complete data, (iii) for small and large number of points, and (iv) for different sizes of radius. On 1000 simulated quarter cylinders of 1m radius with 10% outliers a PCA based method fit cylinders with a radius of on average 3.63 meter (m); the proposed method on the other hand fit cylinders of on average 1.02&amp;thinsp;m radius. The algorithm has potential in applications such as fitting cylindrical (e.g., light and traffic) poles, diameter at breast height estimation for trees, and building and bridge information modelling.


2019 ◽  
Vol 2019 ◽  
pp. 1-13
Author(s):  
Jianghong Zhao ◽  
Yan Dong ◽  
Siyu Ma ◽  
Huajun Liu ◽  
Shuangfeng Wei ◽  
...  

Segmentation is an important step in point cloud data feature extraction and three-dimensional modelling. Currently, it is also a challenging problem in point cloud processing. There are some disadvantages of the DBSCAN method, such as requiring the manual definition of parameters and low efficiency when it is used for large amounts of calculation. This paper proposes the AQ-DBSCAN algorithm, which is a density clustering segmentation method combined with Gaussian mapping. The algorithm improves upon the DBSCAN algorithm by solving the problem of automatic estimation of the parameter neighborhood radius. The improved algorithm can carry out density clustering processing quickly by reducing the amount of computation required.


Author(s):  
Gülhan Benli

Since the 2000s, terrestrial laser scanning, as one of the methods used to document historical edifices in protected areas, has taken on greater importance because it mitigates the difficulties associated with working on large areas and saves time while also making it possible to better understand all the particularities of the area. Through this technology, comprehensive point data (point clouds) about the surface of an object can be generated in a highly accurate three-dimensional manner. Furthermore, with the proper software this three-dimensional point cloud data can be transformed into three-dimensional rendering/mapping/modeling and quantitative orthophotographs. In this chapter, the study will present the results of terrestrial laser scanning and surveying which was used to obtain three-dimensional point clouds through three-dimensional survey measurements and scans of silhouettes of streets in Fatih in Historic Peninsula in Istanbul, which were then transposed into survey images and drawings. The study will also cite examples of the facade mapping using terrestrial laser scanning data in Istanbul Historic Peninsula Project.


Sign in / Sign up

Export Citation Format

Share Document