scholarly journals An Automatic Density Clustering Segmentation Method for Laser Scanning Point Cloud Data of Buildings

2019 ◽  
Vol 2019 ◽  
pp. 1-13
Author(s):  
Jianghong Zhao ◽  
Yan Dong ◽  
Siyu Ma ◽  
Huajun Liu ◽  
Shuangfeng Wei ◽  
...  

Segmentation is an important step in point cloud data feature extraction and three-dimensional modelling. Currently, it is also a challenging problem in point cloud processing. There are some disadvantages of the DBSCAN method, such as requiring the manual definition of parameters and low efficiency when it is used for large amounts of calculation. This paper proposes the AQ-DBSCAN algorithm, which is a density clustering segmentation method combined with Gaussian mapping. The algorithm improves upon the DBSCAN algorithm by solving the problem of automatic estimation of the parameter neighborhood radius. The improved algorithm can carry out density clustering processing quickly by reducing the amount of computation required.

Author(s):  
Y. Hori ◽  
T. Ogawa

The implementation of laser scanning in the field of archaeology provides us with an entirely new dimension in research and surveying. It allows us to digitally recreate individual objects, or entire cities, using millions of three-dimensional points grouped together in what is referred to as "point clouds". In addition, the visualization of the point cloud data, which can be used in the final report by archaeologists and architects, should usually be produced as a JPG or TIFF file. Not only the visualization of point cloud data, but also re-examination of older data and new survey of the construction of Roman building applying remote-sensing technology for precise and detailed measurements afford new information that may lead to revising drawings of ancient buildings which had been adduced as evidence without any consideration of a degree of accuracy, and finally can provide new research of ancient buildings. We used laser scanners at fields because of its speed, comprehensive coverage, accuracy and flexibility of data manipulation. Therefore, we “skipped” many of post-processing and focused on the images created from the meta-data simply aligned using a tool which extended automatic feature-matching algorithm and a popular renderer that can provide graphic results.


Author(s):  
I. Selvaggi ◽  
M. Dellapasqua ◽  
F. Franci ◽  
A. Spangher ◽  
D. Visintini ◽  
...  

Terrestrial remote sensing techniques, including both Terrestrial Laser Scanning (TLS) and Close-Range Photogrammetry (CRP), have been recently used in multiple applications and projects with particular reference to the documentation/inspection of a wide variety of Cultural Heritage structures.<br> The high density of TLS point cloud data allows to perform structure survey in an unprecedented level of detail, providing a direct solution for the digital three-dimensional modelling, the site restoration and the analysis of the structural conditions. Textural information provided by CRP can be used for the photorealistic representation of the surveyed structure. With respect to many studies, the combination of TLS and CRP techniques produces the best results for Cultural Heritage documentation purposes. Moreover, TLS and CRP point cloud data have been proved to be useful in the field of deformation analysis and structural health monitoring. They can be the input data for the Finite Element Method (FEM), providing some prior knowledge concerning the material and the boundary conditions such as constraints and loading.<br> The paper investigates the capabilities and advantages of TLS and CRP data integration for the three-dimensional modelling compared to a simplified geometric reconstruction. This work presents some results concerning the Baptistery of Aquileia in Italy, characterized by an octagonal plan and walls composed by masonry stones with good texture.


Author(s):  
A. Nurunnabi ◽  
Y. Sadahiro ◽  
R. Lindenbergh

This paper investigates the problems of cylinder fitting in laser scanning three-dimensional Point Cloud Data (PCD). Most existing methods require full cylinder data, do not study the presence of outliers, and are not statistically robust. But especially mobile laser scanning often has incomplete data, as street poles for example are only scanned from the road. Moreover, existence of outliers is common. Outliers may occur as random or systematic errors, and may be scattered and/or clustered. In this paper, we present a statistically robust cylinder fitting algorithm for PCD that combines Robust Principal Component Analysis (RPCA) with robust regression. Robust principal components as obtained by RPCA allow estimating cylinder directions more accurately, and an existing efficient circle fitting algorithm following robust regression principles, properly fit cylinder. We demonstrate the performance of the proposed method on artificial and real PCD. Results show that the proposed method provides more accurate and robust results: (i) in the presence of noise and high percentage of outliers, (ii) for incomplete as well as complete data, (iii) for small and large number of points, and (iv) for different sizes of radius. On 1000 simulated quarter cylinders of 1m radius with 10% outliers a PCA based method fit cylinders with a radius of on average 3.63 meter (m); the proposed method on the other hand fit cylinders of on average 1.02&amp;thinsp;m radius. The algorithm has potential in applications such as fitting cylindrical (e.g., light and traffic) poles, diameter at breast height estimation for trees, and building and bridge information modelling.


Author(s):  
Gülhan Benli

Since the 2000s, terrestrial laser scanning, as one of the methods used to document historical edifices in protected areas, has taken on greater importance because it mitigates the difficulties associated with working on large areas and saves time while also making it possible to better understand all the particularities of the area. Through this technology, comprehensive point data (point clouds) about the surface of an object can be generated in a highly accurate three-dimensional manner. Furthermore, with the proper software this three-dimensional point cloud data can be transformed into three-dimensional rendering/mapping/modeling and quantitative orthophotographs. In this chapter, the study will present the results of terrestrial laser scanning and surveying which was used to obtain three-dimensional point clouds through three-dimensional survey measurements and scans of silhouettes of streets in Fatih in Historic Peninsula in Istanbul, which were then transposed into survey images and drawings. The study will also cite examples of the facade mapping using terrestrial laser scanning data in Istanbul Historic Peninsula Project.


2013 ◽  
Vol 864-867 ◽  
pp. 2760-2763
Author(s):  
Zhi Liang Li ◽  
He Sheng Zhang ◽  
Qi Wu

This article is based on three-dimensional laser scanning technology for the modeling of a chemical plant piping, scanned point cloud data with a lot of blunders, comprehensive analysis of the point cloud handling characteristics and stage of maturity of two-dimensional graphics. As a result, a concept of transforming the point cloud data with three dimensional to two-dimensional is formed. Then, according to point and circle positional relationship in the same plane, derived an Algorithm about Gross Error Elimination, finally, programming and achieve it.


2014 ◽  
Vol 926-930 ◽  
pp. 3418-3421
Author(s):  
Li Jian ◽  
Feng Jiao Zheng ◽  
Yu Rong Ma

This paper has proposed a laser scanning point cloud mosaic scheme on the basis of 2D images matching and 3D correspondence feature points refining. This scheme is aimed to solve existing problems in laser scanning point cloud mosaic technology, such as low efficiency,poor accuracy and low automation. Firstly, the 2D images were generated from the derivative information by an interpolation algorithm. Then 2D correspondence feature points were obtained through GPU acceleration SIFT image matching and eliminates gross errors. In order to improve the accuracy of mosaic,the correspondence feature points must be refined through further constraint. Secondly, the 3D correspondence feature points were acquired based on an inversion algorithm using the 2D correspondence feature points.


2020 ◽  
Vol 213 ◽  
pp. 03025
Author(s):  
Yan Wang ◽  
Tingting Zhang ◽  
Jingyi Wang

Three-dimensional point cloud data is a new form of three-dimensional collection, which not only contains the geometric topology information of the object, but also has high simplicity and flexibility. In this paper, the air-ground multi-source data fusion technology is used to study the fine reconstruction of the 3D scene: based on the 3D laser scanning laser point cloud, the 3D spatial information of the ground visible objects is obtained, and the orthophoto obtained by the drone aerial photography is assisted, Obtain the three-dimensional space information of the top of the ground feature, and the ground three-dimensional laser scanner can quickly obtain the three-dimensional surface information of the building facade, ground, and trees. Due to the complex structure of the building and the occlusion of spatial objects, sub-station scanning is required when acquiring point cloud data. This article uses the Sino-German Energy Conservation Center Building of Shenyang Jianzhu University as the research area, using drone tilt photography technology and ground lidar technology to integrate. During the experiment, the field industry adopted the UAV image acquisition strategy of “automatic shooting of regular routes, supplemented by manual shooting of areas of interest”; in the field industry, the method of “manual coarse registration and ICP algorithm fine registration” The example results show that the ground 3D laser point cloud air-ground image fusion 3D modeling effect proposed in this paper is better and the quality is greatly improved, which makes up for the ground 3D laser scanning. In point cloud modeling, a large number of holes are insufficient due to occlusion and missing top information.


Author(s):  
Hoang Long Nguyen ◽  
David Belton ◽  
Petra Helmholz

The demand for accurate spatial data has been increasing rapidly in recent years. Mobile laser scanning (MLS) systems have become a mainstream technology for measuring 3D spatial data. In a MLS point cloud, the point clouds densities of captured point clouds of interest features can vary: they can be sparse and heterogeneous or they can be dense. This is caused by several factors such as the speed of the carrier vehicle and the specifications of the laser scanner(s). The MLS point cloud data needs to be processed to get meaningful information e.g. segmentation can be used to find meaningful features (planes, corners etc.) that can be used as the inputs for many processing steps (e.g. registration, modelling) that are more difficult when just using the point cloud. Planar features are dominating in manmade environments and they are widely used in point clouds registration and calibration processes. There are several approaches for segmentation and extraction of planar objects available, however the proposed methods do not focus on properly segment MLS point clouds automatically considering the different point densities. This research presents the extension of the segmentation method based on planarity of the features. This proposed method was verified using both simulated and real MLS point cloud datasets. The results show that planar objects in MLS point clouds can be properly segmented and extracted by the proposed segmentation method.


Sign in / Sign up

Export Citation Format

Share Document