Nonlinear ultrasonic testing and data analytics for damage characterization: A review

Measurement ◽  
2021 ◽  
Vol 186 ◽  
pp. 110155
Author(s):  
Hongguang Yun ◽  
Rakiba Rayhana ◽  
Shashank Pant ◽  
Marc Genest ◽  
Zheng Liu
2021 ◽  
Author(s):  
Qinxue Pan ◽  
Shuangyang Li ◽  
Lang Xu ◽  
Yunmiao Zhang ◽  
Meile Chang ◽  
...  

Author(s):  
Kosuke Kanda ◽  
Shan Lin

Abstract Nonlinear ultrasonic testing is considered a more promising technique for evaluating closed cracks than conventional ultrasonic testing. However, the mechanism of the generation of nonlinear ultrasonic waves has not been sufficiently explained. We first set up a system to measure the frequency–response characteristics of ultrasonic waves and experimentally investigated the mechanism of second higher-harmonic (HH) wave generation for a fatigue crack. Sweeping the frequencies of incident waves impinging on a fatigue crack introduced to a specimen, we obtained a frequency–response characteristic curve for the crack. From the curve, resonance phenomena resulting from local defect resonance were observed. We then measured the frequency response characteristics of second HH waves using the same system and consequently confirmed that second HH waves resonated when their frequencies corresponded to the eigenfrequencies of the crack. Finally, we theoretically showed that the resonant second HH waves were generated by local defect resonance and nonlinearity.


2017 ◽  
Vol 2017 ◽  
pp. 1-11 ◽  
Author(s):  
Pengfei Wang ◽  
Weiqiang Wang ◽  
Jianfeng Li

The fatigue damage of compressor blade steel KMN-I was investigated using nonlinear ultrasonic testing and the relation curve between the material nonlinearity parameter β and the fatigue life was obtained. The results showed that the nonlinearity parameter increased first and then decreased with the increase of the fatigue cycles. The microstructures were observed by scanning electron microscopy (SEM). It was found that some small defects like holes and pits appeared in the material matrix with the increase of the fatigue cycles, and the nonlinearity parameter increased correspondingly. The nonlinearity parameter reached the peak value when the microcracks initiated, and the nonlinearity parameter began to decrease when the microcracks further propagated to macrocracks. Therefore, it is proved that the nonlinearity parameter can be used to characterize the initiation of microcracks at the early stage of fatigue, and a method of evaluating the fatigue life of materials by nonlinear ultrasonic testing is proposed.


2020 ◽  
Vol 316 ◽  
pp. 01001
Author(s):  
Zaifu Zhan ◽  
Shen Wang ◽  
Songling Huang ◽  
Yang Zheng ◽  
Fuping Wang ◽  
...  

Under harsh environment or during service, the mechanical properties of materials or structure will deteriorate. Most of the simulations exhibit the phenomenon of nonlinearity by introducing the actual small defects, without considering dislocation. In this manuscript, subroutines are written to change the mechanical constitutive behaviour of materials. When the mechanical constitutive behaviour of the material is not linear any more, it is found that the propagation of ultrasonic wave in the material will show more obvious nonlinear phenomenon. Furthermore, the nonlinear detection coefficient is used to characterize the increase of harmonic components. This work provides a new idea for nonlinear ultrasonic testing.


2021 ◽  
Vol 11 (23) ◽  
pp. 11385
Author(s):  
Pengfei Wang ◽  
Weiqiang Wang ◽  
Sanlong Zheng ◽  
Zengliang Gao

The testing of KMN steel bending fatigue with different cycles was carried out using a nonlinear ultrasonic detector to obtain its nonlinear coefficient. The experimental results show that the nonlinear coefficient first increases and then decreases with an increase in fatigue cycles. The relationship between the propagation of the micro-cracks inside the material and the nonlinear coefficient was researched by microscopic analysis in the dangerous position of the specimens. As the fatigue cycles increase, the microstructure of the specimen gradually deteriorates and cracks occur, which proves that nonlinear ultrasonic detection can be used to characterize the initiation of micro-cracks in the early fatigue stages of the material and that the nonlinear coefficient β of the material can be used to reflect the fatigue damage degree and fatigue life of the interior of the material. An analysis of the numerical statistics of the fatigue cracks inside the specimens was carried out, and the extreme value of fatigue cracks was calculated using the Gumbel distribution. An empirical formula for the nonlinear coefficient and crack growth size of KMN steel was established and then a method for estimating the fatigue life of KMN steel based on nonlinear ultrasonic testing was proposed.


Sign in / Sign up

Export Citation Format

Share Document