nonlinear ultrasonic
Recently Published Documents


TOTAL DOCUMENTS

463
(FIVE YEARS 126)

H-INDEX

33
(FIVE YEARS 5)

Ultrasonics ◽  
2022 ◽  
Vol 119 ◽  
pp. 106620
Author(s):  
H. Alnuaimi ◽  
U. Amjad ◽  
S. Park ◽  
P. Russo ◽  
V. Lopresto ◽  
...  

2022 ◽  
Vol 162 ◽  
pp. 108088
Author(s):  
Christos Andreades ◽  
Gian Piero Malfense Fierro ◽  
Michele Meo
Keyword(s):  

Author(s):  
Sehyuk Park ◽  
Hamad N. Alnuaimi ◽  
Anna Hayes ◽  
Madison Sitkiewicz ◽  
Umar Amjad ◽  
...  

Abstract Ultrasonic wave based techniques are widely used for damage detection, and for quantitative and qualitative characterization of materials. In this study, ultrasonic waves are used for probing the response of additively manufactured 316L stainless steel samples as their porosity changes. The additively manufactured stainless steel specimens were fabricated using a laser powder bed fusion (LPBF) metal 3D printer. Four different levels of porosity were obtained by suitably controlling the LPBF process parameters. For generating ultrasonic waves, lead zirconate titanate (PZT) transducers were used. The signals were generated and propagated through the specimens in a transmission mode setup. Both linear and nonlinear analyses were used during the signal processing of the recorded signals for damage characterization. Linear ultrasonic parameters such as the time-of-flight (related to wave velocity) and signal amplitude (related to wave attenuation) were recorded. The nonlinear ultrasonic parameter, Sideband Peak Count - Index (SPC-I), was obtained by a newly developed nonlinear analysis technique called the SPC-I technique. Results obtained for the specimens were analyzed and compared for both linear and nonlinear ultrasonic analyses. Finally, the effectiveness of the SPC-I technique in monitoring porosity levels in additively manufactured specimens is discussed.


Measurement ◽  
2021 ◽  
Vol 186 ◽  
pp. 110155
Author(s):  
Hongguang Yun ◽  
Rakiba Rayhana ◽  
Shashank Pant ◽  
Marc Genest ◽  
Zheng Liu

2021 ◽  
Vol 11 (23) ◽  
pp. 11385
Author(s):  
Pengfei Wang ◽  
Weiqiang Wang ◽  
Sanlong Zheng ◽  
Zengliang Gao

The testing of KMN steel bending fatigue with different cycles was carried out using a nonlinear ultrasonic detector to obtain its nonlinear coefficient. The experimental results show that the nonlinear coefficient first increases and then decreases with an increase in fatigue cycles. The relationship between the propagation of the micro-cracks inside the material and the nonlinear coefficient was researched by microscopic analysis in the dangerous position of the specimens. As the fatigue cycles increase, the microstructure of the specimen gradually deteriorates and cracks occur, which proves that nonlinear ultrasonic detection can be used to characterize the initiation of micro-cracks in the early fatigue stages of the material and that the nonlinear coefficient β of the material can be used to reflect the fatigue damage degree and fatigue life of the interior of the material. An analysis of the numerical statistics of the fatigue cracks inside the specimens was carried out, and the extreme value of fatigue cracks was calculated using the Gumbel distribution. An empirical formula for the nonlinear coefficient and crack growth size of KMN steel was established and then a method for estimating the fatigue life of KMN steel based on nonlinear ultrasonic testing was proposed.


2021 ◽  
Vol 9 (12) ◽  
pp. 1358
Author(s):  
Pengfei Wang ◽  
Weiqiang Wang ◽  
Sanlong Zheng ◽  
Bingbing Chen ◽  
Zengliang Gao

Nonlinear ultrasonic testing is highly sensitive to micro-defects and can be used to detect hidden damage and defects inside materials. At present, most tests are carried out on specimens, and there are few nonlinear ultrasonic tests for fatigue damage of compressor blades. A vibration fatigue test was carried out on compressor blade steel KMN, and blade specimens with different damage degrees were obtained. Then, the nonlinear coefficients of blade specimens were obtained by nonlinear ultrasonic testing. The results showed that the nonlinear coefficient increased with the increase in the number of fatigue cycles in the early stage of fatigue, and then the nonlinear coefficient decreased. The microstructures were observed by scanning electron microscopy (SEM). It was proven that the nonlinear ultrasonic testing can be used for the detection of micro-cracks in the early stage of fatigue. Through the statistical analysis of the size of the micro-cracks inside the material, the empirical formula of the nonlinear coefficient β and the equivalent crack size were obtained. Combined with the β–S–N three-dimensional model, an evaluation method based on the nonlinear ultrasonic testing for the early fatigue damage of the blade was proposed.


Sign in / Sign up

Export Citation Format

Share Document