6-DOF force feedback control of robot-assisted bone fracture reduction system using double F/T sensors and adjustable admittances to protect bones against damage

Mechatronics ◽  
2016 ◽  
Vol 35 ◽  
pp. 136-147 ◽  
Author(s):  
Woo Young Kim ◽  
Seong Young Ko ◽  
Jong-Oh Park ◽  
Sukho Park
2009 ◽  
Vol 28 (10) ◽  
pp. 1259-1278 ◽  
Author(s):  
Ralf Westphal ◽  
Simon Winkelbach ◽  
Friedrich Wahl ◽  
Thomas Gösling ◽  
Markus Oszwald ◽  
...  

2013 ◽  
Vol 133 (8) ◽  
pp. 795-803
Author(s):  
Kazuki Nagase ◽  
Shutaro Yorozu ◽  
Takahiro Kosugi ◽  
Yuki Yokokura ◽  
Seiichiro Katsura

2021 ◽  
Vol 18 (2) ◽  
pp. 333-345
Author(s):  
Jianxing Yang ◽  
Yan Xiong ◽  
Xiaohong Chen ◽  
Yuanxi Sun ◽  
Wensheng Hou ◽  
...  

Micromachines ◽  
2021 ◽  
Vol 12 (6) ◽  
pp. 640
Author(s):  
Linshuai Zhang ◽  
Shuoxin Gu ◽  
Shuxiang Guo ◽  
Takashi Tamiya

A teleoperated robotic catheter operating system is a solution to avoid occupational hazards caused by repeated exposure radiation of the surgeon to X-ray during the endovascular procedures. However, inadequate force feedback and collision detection while teleoperating surgical tools elevate the risk of endovascular procedures. Moreover, surgeons cannot control the force of the catheter/guidewire within a proper range, and thus the risk of blood vessel damage will increase. In this paper, a magnetorheological fluid (MR)-based robot-assisted catheter/guidewire surgery system has been developed, which uses the surgeon’s natural manipulation skills acquired through experience and uses haptic cues to generate collision detection to ensure surgical safety. We present tests for the performance evaluation regarding the teleoperation, the force measurement, and the collision detection with haptic cues. Results show that the system can track the desired position of the surgical tool and detect the relevant force event at the catheter. In addition, this method can more readily enable surgeons to distinguish whether the proximal force exceeds or meets the safety threshold of blood vessels.


Author(s):  
J Jiménez ◽  
F Paulano ◽  
J Noguera ◽  
J Jiménez

2015 ◽  
Vol 798 ◽  
pp. 319-323
Author(s):  
Ali Reza Hassan Beiglou ◽  
Javad Dargahi

It has been more than 20 years that robot-assisted minimally invasive surgery (RMIS) has brought remarkable accuracy and dexterity for surgeons along with the decreasing trauma for the patients. In this paper a novel method of the tissue’s surface profile mapping is proposed. The tissue surface profile plays an important role for material identification during RMIS. It is shown how by integrating the force feedback into robot controller the surface profile of the tissue can be obtained with force feedback scanning. The experiment setup includes a 5 degree of freedoms (DOFs) robot which is equipped with a strain-gauge ball caster as the force feedback. Robot joint encoders signals and the captured force signal of the strain-gauge are transferred to developed surface transformation algorithm (STA). The real-time geometrical transformation process is triggered with force signal to identify contact points between the ball caster and the artificial tissue. The 2D surface profile of tissue will be mapped based on these contact points. Real-time capability of the proposed system is evaluated experimentally for the artifical tissues in a designed test rig.


Sign in / Sign up

Export Citation Format

Share Document