scholarly journals A novel hand exoskeleton to enhance fingers motion for tele-operation of a robot gripper with force feedback☆

Mechatronics ◽  
2022 ◽  
Vol 81 ◽  
pp. 102695
Author(s):  
Ehsan Amirpour ◽  
Rasul Fesharakifard ◽  
Hamed Ghafarirad ◽  
Seyed Mehdi Rezaei ◽  
Alireza Saboukhi ◽  
...  
Author(s):  
Ioannis Sarakoglou ◽  
Anais Brygo ◽  
Dario Mazzanti ◽  
Nadia Garcia Hernandez ◽  
Darwin G. Caldwell ◽  
...  

Author(s):  
Jean-Claude Leon ◽  
Thomas Dupeux ◽  
Jean-Rémy Chardonnet ◽  
Jérôme Perret

The simulation of grasping operations in virtual reality (VR) is required for many applications, especially in the domain of industrial product design, but it is very difficult to achieve without any haptic feedback. Force feedback on the fingers can be provided by a hand exoskeleton, but such a device is very complex, invasive, and costly. In this paper, we present a new device, called HaptiHand, which provides position and force input as well as haptic output for four fingers in a noninvasive way, and is mounted on a standard force-feedback arm. The device incorporates four independent modules, one for each finger, inside an ergonomic shape, allowing the user to generate a wide range of virtual hand configurations to grasp naturally an object. It is also possible to reconfigure the virtual finger positions when holding an object. The paper explains how the device is used to control a virtual hand in order to perform dexterous grasping operations. The structure of the HaptiHand is described through the major technical solutions required and tests of key functions serve as validation process for some key requirements. Also, an effective grasping task illustrates some capabilities of the HaptiHand.


2019 ◽  
Vol 52 (9-10) ◽  
pp. 1319-1328 ◽  
Author(s):  
Anan Suebsomran

Generally, robot gripper is the tool to enhancing the efficiency and ability of grasping task of robot manipulator. The interaction between the object and the grasping finger is the main target of robotic gripper design stage. For this research, robot gripper is then proposed as the new method of robot gripper force control using real-time estimate force feedback signal in order to achieve higher performance of grasping objects. Robot gripper kinematics is also analyzed and adjusted to more practical development. The object manipulation is also identifiable using recursive least square estimation technique of both hard and soft objects during grasping. Force controller of robot gripper is obtained using real-time estimate force feedback signal by the recursive least square method. Comparison of proportional–integral–derivative controller gains is tuned with different force feedback signals, normal force feedback, and estimate force feedback during grasping hard and soft objects validated by experiment. The results of design and development are illustrated by simulation and experimental methods. In addition, due to the limitation of electromagnetic interference, signals will not affect other instrumentations with restricted working condition. The range of gripper motion is detected by applied visible light signal of light-emitting diode and photodiode as limit sensors.


2013 ◽  
Vol 133 (8) ◽  
pp. 795-803
Author(s):  
Kazuki Nagase ◽  
Shutaro Yorozu ◽  
Takahiro Kosugi ◽  
Yuki Yokokura ◽  
Seiichiro Katsura

2010 ◽  
Vol 2 (2) ◽  
pp. 8
Author(s):  
Evy Setiawati

Rattan on frequently attacked by the powder post beetle (Tellu, 2001). The prevention of dry powder attacks is done by preservation. The increasing resistant of rattan from insect attack can be done by an environmentally friendly preservative, the Galam wood vinegar. This research  aims to determine the most effective concentration of preservative that shows the lowest attacks level of D. Farb minutus powder. The rattan used is green rattan (Calamus sp.) The concentration of preservative that are used:10%, 40%, 70% and 100%. The testing of dry powder attack  used force feedback method. The effectiveness test parameters of wood vinegar to dry powder attacks  included degree of protection Dinoderus minutus Farb. powder,  reduction percentage of rattan weight and the mortality of dry powder Dinoderus sp for toxicological testing of wood vinegar. The test results showed that the degree of protection powder in rattan growing along with the increased concentration of preservatives. The higher the concentration of  wood vinegar, the smaller the reduction of rattan weight and the higher the mortality rate of dry powder. Keywords: resistant of rattan, wood vinegar, Dinoderus minutus.


Sign in / Sign up

Export Citation Format

Share Document