Study on the cutting time of the hypoid gear tooth flank

2015 ◽  
Vol 84 ◽  
pp. 113-124 ◽  
Author(s):  
Szu-Hung Chen ◽  
Zhang-Hua Fong
Keyword(s):  
Author(s):  
Claude Gosselin ◽  
Jack Masseth ◽  
Wei Liang

In the manufacturing of spiral-bevel and hypoid gears, circular cutter dimensions are usually based on the desired performance of a gear set. In large manufacturing operations, where several hundred gear geometries may have been cut over the years, the necessary cutter inventory may become quite large since the cutter diameters will differ from one geometry to another, which results in used storage space and associated costs in purchasing and maintaining the cutter parts. Interchangeability of cutters is therefore of significant interest to reduce cost while maintaining approved tooth geometries. An algorithm is presented which allows the use of a different cutter, either in diameter and/or pressure angle, to obtain the same tooth flank surface topography. A test case is presented to illustrate the usefulness of the method: the OB cutter diameter of an hypoid pinion is changed from 8.9500" to 9.1000". CMM results and the comparison of the bearing patterns before and after change show excellent correlation, and indicate that the new pinion can be used in place of the original pinion without performance or quality problems. Significant cost reductions may be obtained with the application of the method.


Measurement ◽  
2016 ◽  
Vol 91 ◽  
pp. 479-487 ◽  
Author(s):  
José A. Brandão ◽  
Jorge H.O. Seabra ◽  
Manuel J.D. Castro

2017 ◽  
Vol 749 ◽  
pp. 161-170
Author(s):  
Ruei Hung Hsu ◽  
Yu Ren Wu ◽  
Shih Sheng Chen

In the gear-hobbing process, the work gear tooth flank is usually longitudinally crowned by varying the center distance between the hob and the work gear. Without crossed angle compensation, however, this center distance variation produces a twisted tooth flank on the work gear. This paper therefore proposes a methodology to reduce this tooth flank twist and achieve anti-twist in longitudinal crowning by modifying the gear rotation angle in the hobbing process which is practiced using a CNC hobbing machine with three synchronous axes.


Author(s):  
J Hedlund ◽  
A Lehtovaara

Gear analysis is typically performed using calculation based on gear standards. Standards provide a good basis in gear geometry calculation for involute gears, but these are unsatisfactory for handling geometry deviations such as tooth flank modifications. The efficient utilization of finite-element calculation also requires the geometry generation to be parameterized. A parameterized numerical approach was developed to create discrete helical gear geometry and contact line by simulating the gear manufacturing, i.e. the hobbing process. This method is based on coordinate transformations and a wide set of numerical calculation points and their synchronization, which permits deviations from common involute geometry. As an example, the model is applied to protuberance tool profile and grinding with tip relief. A fairly low number of calculation points are needed to create tooth flank profiles where error is <1 μm.


Author(s):  
Faydor L. Litvin ◽  
Jui-Sheng Chen ◽  
Thomas M. Sep ◽  
Jyh-Chiang Wang

Abstract Computerized investigation of the influence of alignment errors on the transmission errors and the shift of the bearing contact is proposed. The investigation is performed for an imaginary hypoid gear drive with conjugate tooth surfaces. It is proven that the transmission functions caused by misalignment are periodic discontinues almost linear functions with the frequency of cycle of meshing. The above functions can be totally absorbed by a predesigned parabolic function. The shift of the bearing contact caused by misalignment has been determined as well. The performed investigation is based on computerized simulation of meshing and contact of gear tooth surfaces. The machine-tool settings for the generation of the designed gear drive have been determined. Numerical example that illustrates the developed theory is given. The performed investigation allows to determine the influence of gear misalignment on transmission errors, and design a low-noise hypoid gear drive by a properly predesigned parabolic function of transmission errors.


Author(s):  
V. Simon

The design and advanced manufacture of face-hobbed spiral bevel gears on computer numerical control (CNC) hypoid generating machines is presented. The concept of face-hobbed bevel gear generation by an imaginary generating crown gear is established. In order to reduce the sensitivity of the gear pair to errors in tooth-surfaces and to the mutual position of the mating members, modifications are introduced into the teeth of both members. The lengthwise crowning of teeth is achieved by applying a slightly bigger lengthwise tooth flank curvature of the crown gear generating the concave side of pinion/gear tooth-surfaces, and/or by using tilt angle of the head-cutter in the manufacture of pinion/gear teeth. The tooth profile modification is introduced by the circular profile of the cutting edge of head-cutter blades. An algorithm is developed for the execution of motions on the CNC hypoid generating machine using the relations on the cradle-type machine. The algorithm is based on the condition that since the tool is a rotary surface and the pinion/gear blank is also related to a rotary surface, it is necessary to ensure the same relative position of the head cutter and the pinion on both machines.


2019 ◽  
Vol 20 (12) ◽  
pp. 2171-2181
Author(s):  
Young-Jun Park ◽  
Seung-Je Cho ◽  
Woo-Jin Chung ◽  
Jooseon Oh ◽  
Sang-Dae Lee ◽  
...  

2019 ◽  
Author(s):  
Chia-Ching Lin ◽  
Yawen Wang ◽  
Kan Wang ◽  
Weiqing Zhang ◽  
Shouli Sun ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document