Determination of wear in internal combustion engine valves using the finite element method and experimental tests

2016 ◽  
Vol 104 ◽  
pp. 81-99 ◽  
Author(s):  
Federico J. Cavalieri ◽  
Fernando Zenklusen ◽  
Alberto Cardona
Materials ◽  
2020 ◽  
Vol 13 (23) ◽  
pp. 5536
Author(s):  
David Curto-Cárdenas ◽  
Jose Calaf-Chica ◽  
Pedro Miguel Bravo Díez ◽  
Mónica Preciado Calzada ◽  
Maria-Jose Garcia-Tarrago

Cold expansion technology is an extended method used in aeronautics to increase fatigue life of holes and hence extending inspection intervals. During the cold expansion process, a mechanical mandrel is forced to pass along the hole generating compressive residual hoop stresses. The most widely accepted geometry for this mandrel is the tapered one and simpler options like balls have generally been rejected based on the non-conforming residual hoop stresses derived from their use. In this investigation a novelty process using multiple balls with incremental interference, instead of a single one, was simulated. Experimental tests were performed to validate the finite element method (FEM) models and residual hoop stresses from multiple balls simulation were compared with one ball and tapered mandrel simulations. Results showed that the use of three incremental balls significantly reduced the magnitude of non-conforming residual hoop stresses and the extension of these detrimental zone.


1983 ◽  
Vol 105 (4) ◽  
pp. 484-488 ◽  
Author(s):  
Z. F. Fu

A new method which combines the holography interference technique with the finite element method for determining the distribution of vibration amplitudes and stresses of gas turbine compressor blades is presented in this paper. In comparison with the ordinary electrical strain gage method, the present method has the advantage that there is no limitation to the number of measuring points and good results can be obtained even at high order modes.


Sign in / Sign up

Export Citation Format

Share Document