Forward kinematic analysis of the 3- R P RS parallel manipulator

2017 ◽  
Vol 116 ◽  
pp. 262-272 ◽  
Author(s):  
Anirban Nag ◽  
Santhakumar Mohan ◽  
Sandipan Bandyopadhyay
2018 ◽  
Vol 7 (4.10) ◽  
pp. 90 ◽  
Author(s):  
Arockia Selvakumar A ◽  
. .

This paper presents a numerical approach on kinematic analysis of 3-DOF parallel manipulator (PM). The proposed mechanisms constitute of PRS (Prismatic-Revolute-Spherical) parallel mechanism with two rotations and one translation. The forward and inverse kinematic equations of the PM are derived by position vector method. A total of 48 solutions are obtained for the forward kinematic equations using MATLAB. 


Robotica ◽  
2019 ◽  
Vol 38 (8) ◽  
pp. 1463-1477 ◽  
Author(s):  
Houssem Saafi ◽  
Houssein Lamine

SUMMARYThis paper investigates a comparative kinematic analysis between nonredundant and redundant 2-Degree Of Freedom parallel manipulators. The nonredundant manipulator is based on the Five-Bar mechanism, and the redundant one is a 3-RRR planar parallel manipulator. This study is aimed to select the best structure for a haptic application. This latter requires a mechanism with a desired workspace of 10 cm × 10 cm and an admissible force of 5 N in all directions. The analysis criteria are the accuracy of the forward kinematic model and the required actuator torques. Thereby, the geometric parameters of the two structures are optimized in order to satisfy the required workspace such that parallel singularities are overcome. The analysis showed that the nonredundant optimally designed manipulator is more suitable for the haptic application.


2002 ◽  
Vol 124 (3) ◽  
pp. 419-426 ◽  
Author(s):  
L. Romdhane ◽  
Z. Affi ◽  
M. Fayet

In this work, we shall present a novel design of a 3-translational-DOF in-parallel manipulator having 3 linear actuators. Three variable length legs constitute the actuators of this manipulator, whereas two other kinematic chains with passive joints are used to eliminate the three rotations of the platform with respect to the base. This design presents several advantages compared to other designs of similar 3-translational-dof parallel manipulators. First, the proposed design uses only revolute or spherical joints as passive joints and hence, it avoids problems that are inherent to the nature of prismatic joints when loaded in arbitrary way. Second, the actuators are chosen to be linear and to be located in the three legs since this design presents higher rigidity than other. In the second part of this paper, we addressed the problem of kinematic analysis of the proposed in-parallel manipulator. A mixed geometric and vector formulation is used to show that two solutions exist for the forward kinematic analysis. The problem of singularities is also investigated using the same method. In this work, we investigated the singularities of the active legs and the two types of singularity were identified: architectural singularities and configurational singularities. The singularity of the passive chains, used to restrict the motion of the platform to only three translations, is also investigated. In the last part of this paper, we built a 3D solid model of the platform and the amplitude of rotation due to the deformation of the different links under some realistic load was determined. This allowed us to estimate the “orientation error” of the platform due to external moments. Moreover, this analysis allowed us to compare the proposed design (over constrained) with a modified one (not over constrained). This comparison confirmed the conclusion that the over constraint design has a better rigidity.


Robotics ◽  
2021 ◽  
Vol 10 (1) ◽  
pp. 31
Author(s):  
Alexey Fomin ◽  
Anton Antonov ◽  
Victor Glazunov ◽  
Yuri Rodionov

The proposed study focuses on the inverse and forward kinematic analysis of a novel 6-DOF parallel manipulator with a circular guide. In comparison with the known schemes of such manipulators, the structure of the proposed one excludes the collision of carriages when they move along the circular guide. This is achieved by using cranks (links that provide an unlimited rotational angle) in the manipulator kinematic chains. In this case, all drives stay fixed on the base. The kinematic analysis provides analytical relationships between the end-effector coordinates and six controlled movements in drives (driven coordinates). Examples demonstrate the implementation of the suggested algorithms. For the inverse kinematics, the solution is found given the position and orientation of the end-effector. For the forward kinematics, various assembly modes of the manipulator are obtained for the same given values of the driven coordinates. The study also discusses how to choose the links lengths to maximize the rotational capabilities of the end-effector and provides a calculation of such capabilities for the chosen manipulator design.


Author(s):  
Soheil Zarkandi

This paper introduces a novel three degree-of-freedom spherical parallel manipulator with 3-PRR topology, where P and R denote a curved prismatic joint and a revolute joint, respectively. The first revolute joint of each PRR leg is actuated via a double Rzeppa-type driveshaft, and hence underlined. The manipulator has at most eight working modes and eight assembly modes. However, only one working mode and one assembly mode of the manipulator are acceptable during its motion which can be easily identified. Singularity and kinematic dexterity analyses reveal that the proposed 3-PRR spherical parallel manipulator has no forward kinematic singularity for a wide range of rotation of the moving platform around its central axis. An optimal design of the manipulator is also presented having a workspace with good kinematic dexterity.


Sign in / Sign up

Export Citation Format

Share Document