Tree-Evolution: A novel approach for kinematic synthesis of serial robots under performance constraints

2021 ◽  
Vol 163 ◽  
pp. 104356
Author(s):  
Jing Zhao ◽  
Tong Wu ◽  
Ziqiang Zhang ◽  
Xiaohui Li ◽  
Weihui Liu
Author(s):  
Q. J. Ge ◽  
Ping Zhao ◽  
Anurag Purwar ◽  
Xiangyun Li

The use of the image space of planar displacements for planar motion approximation is a well studied subject. While the constraint manifolds associated with planar four-bar linkages are algebraic, geometric (or normal) distances have been used as default metric for nonlinear least squares fitting of these algebraic manifolds. This paper presents a new formulation for the manifold fitting problem using algebraic distance and shows that the problem can be solved by fitting a pencil of quadrics with linear coefficients to a set of image points of a given set of displacements. This linear formulation leads to a simple and fast algorithm for kinematic synthesis in the image space.


2021 ◽  
Author(s):  
Shrinath Deshpande ◽  
Zhijie Lyu ◽  
Anurag Purwar

Abstract This paper brings together rigid body kinematics and machine learning to create a novel approach to path synthesis of linkage mechanisms under practical constraints, such as location of pivots. We model the coupler curve and constraints as probability distributions of image pixels and employ a Convolutional Neural Network (CNN) based Variational AutoEncoder (VAE) architecture to capture and predict the features of the mechanism. Plausible solutions are found by performing informed latent space exploration so as to minimize the changes to the input coupler curve while seeking to find user-defined pivot locations. Traditionally, kinematic synthesis problems are solved using precision point approach, wherein the input path is represented as a set of points and a set of equations in terms of design parameters are formulated. Generally, this problem is solved via optimization, wherein a measure of error between the given path and the coupler curve is minimized. A limitation of this approach is that the existing formulations depend on the type of mechanism, do not admit practical constraints in a unified way, and provide a limited number of solutions. However, in the machine design pipeline, kinematic synthesis problems are concept generation problems, where designers care more about a large number of plausible and practical solutions rather than the precision of input or the solutions. The image-based approach proposed in this paper alleviates the difficulty associated with inherently uncertain inputs and constraints.


Author(s):  
Q. J. Ge ◽  
Ping Zhao ◽  
Anurag Purwar ◽  
Xiangyun Li

The use of the image space of planar displacements for planar motion approximation is a well studied subject. While the constraint manifolds associated with planar four-bar linkages are algebraic, geometric (or normal) distances have been used as default metric for least-squares fitting of these algebraic manifolds. This paper studies the problem of using algebraic distance for least-squares fitting of quadrics defining the constraint manifolds associated with Planar 4R mechanisms. It shows that the problem can be solved by fitting a pencil of quadrics with linear coefficients to a set of image points of a given one dimensional set of displacements. This linear formulation leads to a simple and fast algorithm for kinematic synthesis in the image space.


2019 ◽  
Vol 476 (24) ◽  
pp. 3705-3719 ◽  
Author(s):  
Avani Vyas ◽  
Umamaheswar Duvvuri ◽  
Kirill Kiselyov

Platinum-containing drugs such as cisplatin and carboplatin are routinely used for the treatment of many solid tumors including squamous cell carcinoma of the head and neck (SCCHN). However, SCCHN resistance to platinum compounds is well documented. The resistance to platinum has been linked to the activity of divalent transporter ATP7B, which pumps platinum from the cytoplasm into lysosomes, decreasing its concentration in the cytoplasm. Several cancer models show increased expression of ATP7B; however, the reason for such an increase is not known. Here we show a strong positive correlation between mRNA levels of TMEM16A and ATP7B in human SCCHN tumors. TMEM16A overexpression and depletion in SCCHN cell lines caused parallel changes in the ATP7B mRNA levels. The ATP7B increase in TMEM16A-overexpressing cells was reversed by suppression of NADPH oxidase 2 (NOX2), by the antioxidant N-Acetyl-Cysteine (NAC) and by copper chelation using cuprizone and bathocuproine sulphonate (BCS). Pretreatment with either chelator significantly increased cisplatin's sensitivity, particularly in the context of TMEM16A overexpression. We propose that increased oxidative stress in TMEM16A-overexpressing cells liberates the chelated copper in the cytoplasm, leading to the transcriptional activation of ATP7B expression. This, in turn, decreases the efficacy of platinum compounds by promoting their vesicular sequestration. We think that such a new explanation of the mechanism of SCCHN tumors’ platinum resistance identifies novel approach to treating these tumors.


2020 ◽  
Vol 51 (3) ◽  
pp. 544-560 ◽  
Author(s):  
Kimberly A. Murphy ◽  
Emily A. Diehm

Purpose Morphological interventions promote gains in morphological knowledge and in other oral and written language skills (e.g., phonological awareness, vocabulary, reading, and spelling), yet we have a limited understanding of critical intervention features. In this clinical focus article, we describe a relatively novel approach to teaching morphology that considers its role as the key organizing principle of English orthography. We also present a clinical example of such an intervention delivered during a summer camp at a university speech and hearing clinic. Method Graduate speech-language pathology students provided a 6-week morphology-focused orthographic intervention to children in first through fourth grade ( n = 10) who demonstrated word-level reading and spelling difficulties. The intervention focused children's attention on morphological families, teaching how morphology is interrelated with phonology and etymology in English orthography. Results Comparing pre- and posttest scores, children demonstrated improvement in reading and/or spelling abilities, with the largest gains observed in spelling affixes within polymorphemic words. Children and their caregivers reacted positively to the intervention. Therefore, data from the camp offer preliminary support for teaching morphology within the context of written words, and the intervention appears to be a feasible approach for simultaneously increasing morphological knowledge, reading, and spelling. Conclusion Children with word-level reading and spelling difficulties may benefit from a morphology-focused orthographic intervention, such as the one described here. Research on the approach is warranted, and clinicians are encouraged to explore its possible effectiveness in their practice. Supplemental Material https://doi.org/10.23641/asha.12290687


2015 ◽  
Vol 21 ◽  
pp. 128
Author(s):  
Kaniksha Desai ◽  
Halis Akturk ◽  
Ana Maria Chindris ◽  
Shon Meek ◽  
Robert Smallridge ◽  
...  
Keyword(s):  

Sign in / Sign up

Export Citation Format

Share Document