Metallic air-bridges fabricated by multiple acceleration voltage electron beam lithography

2004 ◽  
Vol 75 (2) ◽  
pp. 210-215 ◽  
Author(s):  
T Borzenko ◽  
C Gould ◽  
G Schmidt ◽  
L.W Molenkamp
2019 ◽  
Vol 8 (3-4) ◽  
pp. 253-266
Author(s):  
Noriyuki Unno ◽  
Jun Taniguchi

Abstract Nanostructures have unique characteristics, such as large specific surface areas, that provide a wide range of engineering applications, such as electronics, optics, biotics, and thermal and fluid dynamics. They can be used to downsize many engineering products; therefore, new nanofabrication techniques are strongly needed to meet this demand. A simple fabrication process with high throughput is necessary for low-cost nanostructures. In recent years, three-dimensional (3D) nanostructures have attracted much attention because they dramatically opened up new fields for applications. However, conventional techniques for fabricating 3D nanostructures contain many complex processes, such as multiple patterning lithography, metal deposition, lift-off, etching, and chemical-mechanical polishing. This paper focuses on controlled-acceleration-voltage electron beam lithography (CAV-EBL), which can fabricate 3D nanostructures in one shot. The applications of 3D nanostructures are introduced, and the conventional 3D patterning technique is compared with CAV-EBL and various 3D patterning techniques using CAV-EBL with nanoimprinting technology. Finally, the outlook for next-generation devices that can be fabricated by CAV-EBL is presented.


1994 ◽  
Vol 64 (3) ◽  
pp. 390-392 ◽  
Author(s):  
C. R. K. Marrian ◽  
F. K. Perkins ◽  
S. L. Brandow ◽  
T. S. Koloski ◽  
E. A. Dobisz ◽  
...  

2019 ◽  
Vol 8 (3-4) ◽  
pp. 289-297 ◽  
Author(s):  
Kohei Goto ◽  
Jun Taniguchi

Abstract Methods for fabricating micro- and nanoscale three-dimensional (3D) structures such as electron-beam lithography (EBL) attracted attention in various fields. In EBL, an acceleration-voltage modulation method can be used to control the developing depth of the structure. In this study, we fabricated a rose petal structure using acceleration-voltage modulation. Using a rose petal mold, plastic- and silver-duplicated rose petals were prepared using nano-imprint lithography (NIL). We demonstrated that various complex 3D structures and materials can be duplicated using NIL by applying an acceleration-voltage modulation method.


1992 ◽  
Vol 283 ◽  
Author(s):  
P. Ils ◽  
M. Michel ◽  
A. Forchel ◽  
I. Gyuro ◽  
P. Speier ◽  
...  

ABSTRACTWe have fabricated and analyzed high quality InGaAs/InP quantum wires by electron beam lithography and wet chemical etching. In order to optimize the shape of the wet-etched wires different wire orientations were investigated. As results of the lithography process we obtain wire masks with widths down to 15 nm and etched wires with widths of the InGaAs layer of 18 nm.The wires were studied optically by means of photoluminescence spectroscopy. In contrast to dry etched wire structures the wet chemically etched wires show strong optical emission even for geometrical widths less than 25 nm. The weak decrease of the quantum efficiency with decreasing wire width indicates that there are no dead layers at the side walls of the wires, which is in contrast to previous studies on dry-etched structures. The photoluminescence energy of the InGaAs/InP wires is independent of the wire dimension down to widths of 50 nm. This indicates that a steep lateral potential in our structures is obtained due to the confinement by the semiconductor/vacuum transition at the etched surfaces. For wires with smaller widths an increasing blue shift of photoluminescence energy up to more than 30 meV is observed.


Sign in / Sign up

Export Citation Format

Share Document