Characterization of microfluidic fuel cell based on multiple laminar flow

2007 ◽  
Vol 84 (5-8) ◽  
pp. 1182-1185 ◽  
Author(s):  
M.H. Sun ◽  
G. Velve Casquillas ◽  
S.S. Guo ◽  
J. Shi ◽  
H. Ji ◽  
...  
Author(s):  
Seyed Ali Mousavi Shaegh ◽  
Nam-Trung Nguyen ◽  
Siew Hwa Chan

This paper reports the fabrication and characterization of a new concept of flow-through anode for membraneless laminar flow fuel cell (LFFC). To establish a reference case, a fuel cell with flow over and planar anode was fabricated as well. Experimental results indicated that maximum power density was improved from 17 mW/cm2 in planar design to 23 mW/cm2 using the flow-through design. The higher power density of flow-through design is an indicative of higher fuel utilization in the porous anode. Images of the flow obtained experimentally showed that mixing was reduced at the liquid-liquid interface in the channel with flow-through anode leading to increased fuel concentration over anode.


2005 ◽  
Vol 127 (48) ◽  
pp. 16758-16759 ◽  
Author(s):  
Ranga S. Jayashree ◽  
Lajos Gancs ◽  
Eric R. Choban ◽  
Alex Primak ◽  
Dilip Natarajan ◽  
...  

2015 ◽  
Vol 9 (6) ◽  
pp. 064110 ◽  
Author(s):  
Dingding Ye ◽  
Yang Yang ◽  
Jun Li ◽  
Xun Zhu ◽  
Qiang Liao ◽  
...  

Author(s):  
Isaac B. Sprague ◽  
Prashanta Dutta

A 2D numerical model is developed for a laminar flow fuel cell considering ion transport and the electric double layer around the electrodes. The Frumkin-Butler-Volmer equation is used for the fuel cell kinetics. The finite volume method is used to form algebraic equations from governing partial differential equations. The numerical solution was obtained using Newton’s method and a block TDMA solver. The model accounts for the coupling of charged ion transport with the electric field and is able to fully resolve the diffuse regions of the electric double layer in both the stream-wise and cross-channel directions. Different operating phenomena, such as laminar flow separation and the development of the depletion boundary layers and electric double layers are obtained. These numerical results demonstrate the model’s ability to capture the complex behavior of a microfluidic fuel cell which has been ignored in previous 1D models.


Author(s):  
Ali Ebrahimi Khabbazi ◽  
Andrew Richards ◽  
Mina Hoorfar

A typical microfluidic fuel cell is comprised of a Y- or T-shaped microchannel. The fuel and the oxidant streams are introduced from the two different inlets. The anodic and cathodic flows meet each other at the beginning of the main channel and start to travel together along the channel. Due to the fact that the viscous forces dominate the inertia forces in microchannels, the oxidant and the fuel streams establish a side-by-side co-laminar flow which makes the anolyte and catholyte flow together without turbulent mixing. Laminar flow in microfluidic fuel cells plays the role of the membrane in proton exchange membrane (PEM) fuel cells by maintaining the separation of the fuel and oxidant. This eliminates the need for the membrane and overcomes the membrane-related issues such as the ohmic overpotential and water management which are relevant to PEM fuel cells. In addition to the above advantage, the high surface-to-volume ratio of these micron-scale devices contributes to their high power density. This advantage is due to the fact that the electrochemical reactions in fuel cells are surface-based. The electrodes on which the electrochemical reactions are occurring are installed appropriately on the walls of the channel in a way that reacting flows are restricted to the proper electrodes. Since the flow is laminar the performance of the microfluidic fuel cell significantly depends on the device geometry. In this paper, different channel geometries and different electrode configurations are modeled and their performances are compared through the polarization curves. It has been found that the high aspect ratio provides the largest power density. In this work, the performance of the flow-through porous electrode was also modeled and compared against the conventional non-porous electrode microfluidic fuel cells. The flow-through porous electrode design is based on cross-flow of aqueous vanadium redox species through the electrodes into an exit channel, where the waste solutions meet and establish a co-laminar flow. This co-laminar flow of reacted species facilitates ionic charge transfer in a membraneless configuration. It has been found that the flow-through porous architecture provides an increased active surface area which contributes to a higher power density as opposed to the fuel cells with non-porous electrodes.


Sign in / Sign up

Export Citation Format

Share Document