Effects of annealing schedule on orientations of Bi3.2Nd0.8Ti3O12 ferroelectric films prepared by metalorganic solution deposition

2008 ◽  
Vol 85 (3) ◽  
pp. 508-511 ◽  
Author(s):  
Haiyan He ◽  
Jianfeng Huang ◽  
Liyun Cao ◽  
Liesong Wang
2021 ◽  
Vol 21 (4) ◽  
pp. 2681-2686
Author(s):  
Nguyen Ngoc Minh ◽  
Bui Van Dan ◽  
Nguyen Duc Minh ◽  
Guus Rijnders ◽  
Ngo Duc Quan

Lead-free Bi0.5K0.5TiO3 (BKT) ferroelectric films were synthesized on Pt/Ti/SiO2/Si substrates via the chemical solution deposition. The influence of the excess potassium on the microstructures and the ferroelectric properties of the films was investigated in detail. The results showed that the BKT films have reached the well-crystallized state in the single-phase perovskite structure with 20 mol.% excess amount of potassium. For this film, the ferroelectric properties of the films were significantly enhanced. The remnant polarization (Pr) and maximum polarization (Pm) reached the highest values of 9.4 μC/cm2 and 32.2 μC/cm2, respectively, under the electric field of 400 kV/cm.


2008 ◽  
Vol 20 (18) ◽  
pp. 5731-5733 ◽  
Author(s):  
Iñigo Bretos ◽  
Ricardo Jiménez ◽  
Javier Garcïa-López ◽  
Lorena Pardo ◽  
M. Lourdes Calzada

2005 ◽  
Vol 902 ◽  
Author(s):  
Hiroshi Uchida ◽  
Shintaro Yasui ◽  
Risako Ueno ◽  
Hiroshi Nakaki ◽  
Ken Nishida ◽  
...  

AbstractIon modification for various perovskite-based ferroelectric thin films using rare-earth cations was attempted for improving the electrical properties. Strategy for controlling the electrical properties is mainly based on two concepts, that is, (i) substituting the volatile cations such as Pb2+ and Bi3+, and (ii) controlling the crystal anisotropy of perovskite unit cell. In this study, the influences of ion-modification conditions (i.e., amount, species and occupying site of substituent cations) on the electrical properties of perovskite-based ferroelectric films fabricated by a chemical solution deposition were investigated. Substituting volatile cations in simple-perovskite oxides, such Pb2+ in Pb(Zr,Ti)O3 and Bi3+ in BiFeO3, for the rare-earth cations like La3+ and Nd3+ reduced the leakage current density of these films due to suppressing the metal and / or oxygen vacancies, as well as in layered-perovskite oxides, such as Bi4Ti3O12 films [i.e., strategy (i)]. Also, crystal anisotropy of perovskite-based oxides could controlled by varying the species and the occupying site of substituent cations [i.e., strategy (ii)]; for example, the crystal anisotropy of Pb(Zr,Ti)O3 lattice was elongated by Ti- and Zr-site (B-site) substitution using rare-earth cations whose ionic radii locate on the smaller part of rare-earth series (such as Y3+, Dy3+), that resulted in enhancing the spontaneous polarization. We concluded that the strategy for controlling the electrical property mentioned in this study would be applicable for a various kind of perovskite-based ferroelectric films.


2008 ◽  
Vol 23 (10) ◽  
pp. 2787-2795 ◽  
Author(s):  
J. Ricote ◽  
S. Holgado ◽  
Z. Huang ◽  
P. Ramos ◽  
R. Fernández ◽  
...  

The integration of ferroelectrics in nanodevices requires firstly the preparation of high-quality ultrathin films. Chemical solution deposition is considered a rapid and cost-effective technique for preparing high-quality oxide films, but one that has traditionally been regarded as unsuitable, or at least challenging, for fabricating films with good properties and thickness below 100 nm. In the present work we explore the deposition of highly diluted solutions of pure and Ca-modified lead titanates to prepare ultrathin ferroelectric films, the thickness of which is controlled by the concentration of the precursor solution. The results show that we are able to obtain single crystalline phase continuous films down to 18 nm thickness, one of the lowest reported using these methods. Below that thickness, the films start to be discontinuous, which is attributed to a microstructural instability that can be controlled by an adequate tailoring of the processing conditions. The effect of the reduction of thickness on the piezoelectric behavior is studied by piezoresponse force microscopy. The results indicate that films retain a significant piezoelectric activity regardless of their low thickness, which is promising for their eventual integration in nanodevices, for example, as transducer elements in nanoelectromechanical systems.


Author(s):  
S. G. Ghonge ◽  
E. Goo ◽  
R. Ramesh ◽  
R. Haakenaasen ◽  
D. K. Fork

Microstructure of epitaxial ferroelectric/conductive oxide heterostructures on LaAIO3(LAO) and Si substrates have been studied by conventional and high resolution transmission electron microscopy. The epitaxial films have a wide range of potential applications in areas such as non-volatile memory devices, electro-optic devices and pyroelectric detectors. For applications such as electro-optic devices the films must be single crystal and for applications such as nonvolatile memory devices and pyroelectric devices single crystal films will enhance the performance of the devices. The ferroelectric films studied are Pb(Zr0.2Ti0.8)O3(PLZT), PbTiO3(PT), BiTiO3(BT) and Pb0.9La0.1(Zr0.2Ti0.8)0.975O3(PLZT).Electrical contact to ferroelectric films is commonly made with metals such as Pt. Metals generally have a large difference in work function compared to the work function of the ferroelectric oxides. This results in a Schottky barrier at the interface and the interfacial space charge is believed to responsible for domain pinning and degradation in the ferroelectric properties resulting in phenomenon such as fatigue.


Sign in / Sign up

Export Citation Format

Share Document