Size dependence of the optical gap of “small” silicon quantum dots: Ab initio and empirical correlation schemes

2013 ◽  
Vol 112 ◽  
pp. 231-234 ◽  
Author(s):  
Shanawer Niaz ◽  
Emmanuel N. Koukaras ◽  
Nikolaos P. Katsougrakis ◽  
Theodoros G. Kourelis ◽  
Dimitrios K. Kougias ◽  
...  
2001 ◽  
Vol 87 (27) ◽  
Author(s):  
C. S. Garoufalis ◽  
Aristides D. Zdetsis ◽  
Stefan Grimme

2014 ◽  
Vol 16 (36) ◽  
pp. 19275-19281 ◽  
Author(s):  
Huashan Li ◽  
Zhigang Wu ◽  
Tianlei Zhou ◽  
Alan Sellinger ◽  
Mark T. Lusk

The optical gap of silicon quantum dots can be tailored, independent of their size, via direct generation of spatially separated excitons.


2018 ◽  
Author(s):  
Oscar A. Douglas-Gallardo ◽  
Cristián Gabriel Sánchez ◽  
Esteban Vöhringer-Martinez

<div> <div> <div> <p>Nowadays, the search of efficient methods able to reduce the high atmospheric carbon dioxide concentration has turned into a very dynamic research area. Several environmental problems have been closely associated with the high atmospheric level of this greenhouse gas. Here, a novel system based on the use of surface-functionalized silicon quantum dots (sf -SiQDs) is theoretically proposed as a versatile device to bind carbon dioxide. Within this approach, carbon dioxide trapping is modulated by a photoinduced charge redistribution between the capping molecule and the silicon quantum dots (SiQDs). Chemical and electronic properties of the proposed SiQDs have been studied with Density Functional Theory (DFT) and Density Functional Tight-Binding (DFTB) approach along with a Time-Dependent model based on the DFTB (TD-DFTB) framework. To the best of our knowledge, this is the first report that proposes and explores the potential application of a versatile and friendly device based on the use of sf -SiQDs for photochemically activated carbon dioxide fixation. </p> </div> </div> </div>


2021 ◽  
Vol 125 (6) ◽  
pp. 3421-3431
Author(s):  
İrem Nur Gamze Özbilgin ◽  
Batu Ghosh ◽  
Hiroyuki Yamada ◽  
Naoto Shirahata

2021 ◽  
pp. 2100288
Author(s):  
Marc Julian Kloberg ◽  
Haoyang Yu ◽  
Elisabeth Groß ◽  
Felix Eckmann ◽  
Tassilo M. F. Restle ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document