Design, simulation, fabrication and characterization of a micro electromagnetic vibration energy harvester with sandwiched structure and air channel

2012 ◽  
Vol 43 (2) ◽  
pp. 154-159 ◽  
Author(s):  
Peihong Wang ◽  
Huiting Liu ◽  
Xuhan Dai ◽  
Zhuoqing Yang ◽  
Zhongzhu Wang ◽  
...  
2022 ◽  
Vol 253 ◽  
pp. 115146
Author(s):  
Yifeng Wang ◽  
Peigen Wang ◽  
Shoutai Li ◽  
Mingyuan Gao ◽  
Huajiang Ouyang ◽  
...  

Energies ◽  
2019 ◽  
Vol 12 (12) ◽  
pp. 2410 ◽  
Author(s):  
Bei Zhang ◽  
Qichang Zhang ◽  
Wei Wang ◽  
Jianxin Han ◽  
Xiaoli Tang ◽  
...  

A novel bistable electromagnetic vibration energy harvester (BEMH) is constructed and optimized in this study, based on a nonlinear system consisting mainly of a flexible membrane and a magnetic spring. A large-amplitude transverse vibration equation of the system is established with the general nonlinear geometry and magnetic force. Firstly, the mathematical model, considering the higher-order nonlinearities given by nonlinear Galerkin method, is applied to a membrane with a co-axial magnet mass and magnetic spring. Secondly, the steady vibration response of the membrane subjected to a harmonic base motion is obtained, and then the output power considering electromagnetic effect is analytically derived. On this basis, a parametric study in a broad frequency domain has been achieved for the BEMH with different radius ratios and membrane thicknesses. It is demonstrated that model predictions are both in close agreement with results from the finite element simulation and experiment data. Finally, the proposed efficient solution method is used to obtain an optimizing strategy for the design of multi-stable energy harvesters with the similar flexible structure.


Sign in / Sign up

Export Citation Format

Share Document