Diffusion of glycosylphosphatidylinositol (GPI)-anchored bovine prion protein (PrPc) in supported lipid membranes studied by single-molecule and complementary ensemble methods

2008 ◽  
Vol 321 (1) ◽  
pp. 61-68 ◽  
Author(s):  
Thomas Schubert ◽  
Michael Bärmann ◽  
Monika Rusp ◽  
Walter Gränzer ◽  
Motomu Tanaka
2014 ◽  
Vol 14 (5) ◽  
pp. 617-623 ◽  
Author(s):  
Michael Hirtz ◽  
Naresh Kumar ◽  
Lifeng Chi

Membranes ◽  
2020 ◽  
Vol 11 (1) ◽  
pp. 11
Author(s):  
Damian Dziubak ◽  
Kamil Strzelak ◽  
Slawomir Sek

Supported lipid membranes are widely used platforms which serve as simplified models of cell membranes. Among numerous methods used for preparation of planar lipid films, self-assembly of bicelles appears to be promising strategy. Therefore, in this paper we have examined the mechanism of formation and the electrochemical properties of lipid films deposited onto thioglucose-modified gold electrodes from bicellar mixtures. It was found that adsorption of the bicelles occurs by replacement of interfacial water and it leads to formation of a double bilayer structure on the electrode surface. The resulting lipid assembly contains numerous defects and pinholes which affect the permeability of the membrane for ions and water. Significant improvement in morphology and electrochemical characteristics is achieved upon freeze–thaw treatment of the deposited membrane. The lipid assembly is rearranged to single bilayer configuration with locally occurring patches of the second bilayer, and the number of pinholes is substantially decreased. Electrochemical characterization of the lipid membrane after freeze–thaw treatment demonstrated that its permeability for ions and water is significantly reduced, which was manifested by the relatively high value of the membrane resistance.


1998 ◽  
Vol 10 (5) ◽  
pp. 295-302 ◽  
Author(s):  
Victor I. Passechnik ◽  
Tibor Hianik ◽  
Sergey A. Ivanov ◽  
Branislav Sivak

2021 ◽  
Vol 118 (48) ◽  
pp. e2113202118
Author(s):  
Rafael L. Schoch ◽  
Frank L. H. Brown ◽  
Gilad Haran

Lipid membranes are complex quasi–two-dimensional fluids, whose importance in biology and unique physical/materials properties have made them a major target for biophysical research. Recent single-molecule tracking experiments in membranes have caused some controversy, calling the venerable Saffman–Delbrück model into question and suggesting that, perhaps, current understanding of membrane hydrodynamics is imperfect. However, single-molecule tracking is not well suited to resolving the details of hydrodynamic flows; observations involving correlations between multiple molecules are superior for this purpose. Here dual-color molecular tracking with submillisecond time resolution and submicron spatial resolution is employed to reveal correlations in the Brownian motion of pairs of fluorescently labeled lipids in membranes. These correlations extend hundreds of nanometers in freely floating bilayers (black lipid membranes) but are severely suppressed in supported lipid bilayers. The measurements are consistent with hydrodynamic predictions based on an extended Saffman–Delbrück theory that explicitly accounts for the two-leaflet bilayer structure of lipid membranes.


PLoS ONE ◽  
2013 ◽  
Vol 8 (2) ◽  
pp. e54982 ◽  
Author(s):  
Nahid N. Jetha ◽  
Valentyna Semenchenko ◽  
David S. Wishart ◽  
Neil R. Cashman ◽  
Andre Marziali

2005 ◽  
Author(s):  
Mairi E. Sandison ◽  
Daniele Malleo ◽  
David Holmes ◽  
Richard Berry ◽  
Hywel Morgan

RSC Advances ◽  
2016 ◽  
Vol 6 (94) ◽  
pp. 91102-91110 ◽  
Author(s):  
Fang Zhao ◽  
Jenny Perez Holmberg ◽  
Zareen Abbas ◽  
Rickard Frost ◽  
Tora Sirkka ◽  
...  

Different levels of model systems are needed for effect studies of engineered nanoparticles and the development of nanoparticle structure–activity relationships in biological systems.


Sign in / Sign up

Export Citation Format

Share Document