nanoparticle interactions
Recently Published Documents


TOTAL DOCUMENTS

271
(FIVE YEARS 80)

H-INDEX

41
(FIVE YEARS 9)

Author(s):  
Behafarid Ghalandari ◽  
Kazem Asadollahi ◽  
Farnaz Ghorbani ◽  
Suzan Ghalehbaghi ◽  
Saharnaz Rafiee ◽  
...  

2021 ◽  
Vol 93 (35) ◽  
pp. 11982-11990 ◽  
Author(s):  
Joanna Xiuzhu Xu ◽  
Md. Siddik Alom ◽  
Nicholas C. Fitzkee

2021 ◽  
Vol 12 ◽  
Author(s):  
Joanna Xiuzhu Xu ◽  
Nicholas C. Fitzkee

The spontaneous formation of a protein corona on a nanoparticle surface influences the physiological success or failure of the synthetic nanoparticle as a drug carrier or imaging agent used in vivo. A quantitative understanding of protein-nanoparticle interactions is therefore critical for the development of nanoparticle-based therapeutics. In this perspective, we briefly discuss the challenges and limitations of current approaches used for studying protein-nanoparticle binding in a realistic biological medium. Subsequently, we demonstrate that solution nuclear magnetic resonance (NMR) spectroscopy is a powerful tool to monitor protein competitive binding in a complex serum medium in situ. Importantly, when many serum proteins are competing for a gold nanoparticle (AuNP) surface, solution NMR is able to detect differences in binding thermodynamics, and kinetics of a tagged protein. Combined with other experimental approaches, solution NMR is an invaluable tool to understand protein behavior in the nanoparticle corona.


Molecules ◽  
2021 ◽  
Vol 26 (16) ◽  
pp. 4903
Author(s):  
Debora Santonocito ◽  
Carmelo Puglia ◽  
Cristina Torrisi ◽  
Alessandro Giuffrida ◽  
Valentina Greco ◽  
...  

Glycyrrhetic acid (GA) and stearyl glycyrrhetinate (SG) are two interesting compounds from Glycyrrhiza glabra, showing numerous biological properties widely applied in the pharmaceutical and cosmetic fields. Despite these appreciable benefits, their potential therapeutic properties are strongly compromised due to unfavourable physical-chemical features. The strategy exploited in the present work was to develop solid lipid nanoparticles (SLNs) as carrier systems for GA and SG delivery. Both formulations loaded with GA and SG (GA-SLNs and SG-SLNs, respectively) were prepared by the high shear homogenization coupled to ultrasound (HSH-US) method, and we obtained good technological parameters. DSC was used to evaluate their thermotropic behaviour and ability to act as carriers for GA and SG. The study was conducted by means of a biomembrane model (multilamellar vesicles; MLVs) that simulated the interaction of the carriers with the cellular membrane. Unloaded and loaded SLNs were incubated with the biomembranes, and their interactions were evaluated over time through variations in their calorimetric curves. The results of these studies indicated that GA and SG interact differently with MLVs and SLNs; the interactions of SG-SLNs and GA-SLNs with the biomembrane model showed different variations of the MLVs calorimetric curve and suggest the potential use of SLNs as delivery systems for GA.


2021 ◽  
Vol 12 (1) ◽  
Author(s):  
Zhaohong Mi ◽  
Ce-Belle Chen ◽  
Hong Qi Tan ◽  
Yanxin Dou ◽  
Chengyuan Yang ◽  
...  

AbstractCorrelative imaging and quantification of intracellular nanoparticles with the underlying ultrastructure is crucial for understanding cell-nanoparticle interactions in biological research. However, correlative nanoscale imaging of whole cells still remains a daunting challenge. Here, we report a straightforward nanoscopic approach for whole-cell correlative imaging, by simultaneous ionoluminescence and ultrastructure mapping implemented with a highly focused beam of alpha particles. We demonstrate that fluorescent nanodiamonds exhibit fast, ultrabright and stable emission upon excitation by alpha particles. Thus, by using fluorescent nanodiamonds as imaging probes, our approach enables quantification and correlative localization of single nanodiamonds within a whole cell at sub-30 nm resolution. As an application example, we show that our approach, together with Monte Carlo simulations and radiobiological experiments, can be employed to provide unique insights into the mechanisms of nanodiamond radiosensitization at the single whole-cell level. These findings may benefit clinical studies of radio-enhancement effects by nanoparticles in charged-particle cancer therapy.


Nanophotonics ◽  
2021 ◽  
Vol 0 (0) ◽  
Author(s):  
Fenghao Sun ◽  
Hui Li ◽  
Shanshan Song ◽  
Fei Chen ◽  
Jiawei Wang ◽  
...  

Abstract Using single-shot velocity map imaging technique, explosion imaging of different ion species ejected from 50 nm SiO2 nanoparticles are obtained excitedly by strong near-infrared and ultraviolet femtosecond laser fields. Characteristic momentum distributions showing forward emission of the ions at low excitation intensities and shock wave behaviors at high intensities are observed. When the excitation intensity is close to the dissociative ionization threshold of the surface molecules, the resulting ion products can be used to image the instant near-field distributions. The underlying dynamics of shock formation are simulated by using a Coulomb explosion model. Our results allow one to distinguish the ultrafast strong-field response of various molecular species in nanosystems and will open a new way for further exploration of the underlying dynamics of laser-and-nanoparticle interactions.


Nanomaterials ◽  
2021 ◽  
Vol 11 (6) ◽  
pp. 1528
Author(s):  
Benjamin J. Swartzwelter ◽  
Craig Mayall ◽  
Andi Alijagic ◽  
Francesco Barbero ◽  
Eleonora Ferrari ◽  
...  

Many components of the innate immune system are evolutionarily conserved and shared across many living organisms, from plants and invertebrates to humans. Therefore, these shared features can allow the comparative study of potentially dangerous substances, such as engineered nanoparticles (NPs). However, differences of methodology and procedure between diverse species and models make comparison of innate immune responses to NPs between organisms difficult in many cases. To this aim, this review provides an overview of suitable methods and assays that can be used to measure NP immune interactions across species in a multidisciplinary approach. The first part of this review describes the main innate immune defense characteristics of the selected models that can be associated to NPs exposure. In the second part, the different modes of exposure to NPs across models (considering isolated cells or whole organisms) and the main endpoints measured are discussed. In this synergistic perspective, we provide an overview of the current state of important cross-disciplinary immunological models to study NP-immune interactions and identify future research needs. As such, this paper could be used as a methodological reference point for future nano-immunosafety studies.


Sign in / Sign up

Export Citation Format

Share Document