Which is more competitive for production of organic acids, ion-exchange or electrodialysis with bipolar membranes?

2011 ◽  
Vol 374 (1-2) ◽  
pp. 150-156 ◽  
Author(s):  
Yaoming Wang ◽  
Chuanhui Huang ◽  
Tongwen Xu
Membranes ◽  
2020 ◽  
Vol 10 (11) ◽  
pp. 346 ◽  
Author(s):  
Stanislav Melnikov ◽  
Denis Bondarev ◽  
Elena Nosova ◽  
Ekaterina Melnikova ◽  
Victor Zabolotskiy

Bilayer ion-exchange membranes are mainly used for separating single and multiply charged ions. It is well known that in membranes in which the layers have different charges of the ionogenic groups of the matrix, the limiting current decreases, and the water splitting reaction accelerates in comparison with monolayer (isotropic) ion-exchange membranes. We study samples of bilayer ion-exchange membranes with very thin cation-exchange layers deposited on an anion-exchange membrane-substrate in this work. It was revealed that in bilayer membranes, the limiting current’s value is determined by the properties of a thin surface film (modifying layer). A linear regularity of the dependence of the non-equilibrium effective rate constant of the water-splitting reaction on the resistance of the bipolar region, which is valid for both bilayer and bipolar membranes, has been revealed. It is shown that the introduction of the catalyst significantly reduces the water-splitting voltage, but reduces the selectivity of the membrane. It is possible to regulate the fluxes of salt ions and water splitting products (hydrogen and hydroxyl ions) by changing the current density. Such an ability makes it possible to conduct a controlled process of desalting electrolytes with simultaneous pH adjustment.


2003 ◽  
Vol 227 (1-2) ◽  
pp. 95-111 ◽  
Author(s):  
L Lebrun ◽  
E Da Silva ◽  
G Pourcelly ◽  
M Métayer

2004 ◽  
Vol 26 (3) ◽  
pp. 185-190 ◽  
Author(s):  
S. Ledakowicz ◽  
T. Jamroz ◽  
B. Sencio ◽  
P. Gluszcz

2020 ◽  
Vol 20 (11) ◽  
pp. 6797-6801
Author(s):  
Tae Yang Son ◽  
Jun Seong Yun ◽  
Kihyun Kim ◽  
Sang Yong Nam

This study describes the use of poly(phenylene oxide) polymer-based ion-exchange polymers, polystyrene-based ion-exchange particles and a porous support for fabricating bipolar membranes and the results of an assessment of the applicability of these materials to water splitting. In order to achieve good mechanical as well as good ion-exchange properties, bipolar membranes were prepared by laminating poly(phenylene oxide) and polystyrene based ion-exchange membranes with a sulfonated polystyrene-block-(ethylene-ran-butylene)-block-polystyrene) (S-SEBS) modified interface. PE pore-supported ion-exchange membranes were also used as bipolar membranes. The tensile strength was 13.21 MPa for the bipolar membrane which utilized only a cation/anion-exchange membrane. When ion-exchange nanoparticles were introduced for high efficiency, a reduction in the tensile strength to 6.81 MPa was observed. At the same time, bipolar membrane in the form of a composite membrane using PE support exhibited the best tensile strength of 32.41 MPa. To confirm the water-splitting performance, an important factor for a bipolar membrane, pH changes over a period of 20 min were also studied. During water slitting using CA-P-PE-BPM, the pH at the CEM part and the AEM part changed from 5.4 to 4.18 and from 5.4 to 5.63, respectively.


Sign in / Sign up

Export Citation Format

Share Document