Polyimide/ZIFs mixed matrix membranes with tunable interfacial interaction for efficient gas separation

2022 ◽  
pp. 120240
Author(s):  
Yan Liu ◽  
Wei Xie ◽  
Shuang Liang ◽  
Xingxun Li ◽  
Yanfang Fan ◽  
...  
Membranes ◽  
2021 ◽  
Vol 11 (1) ◽  
pp. 35
Author(s):  
Jiangfeng Lu ◽  
Xu Zhang ◽  
Lusheng Xu ◽  
Guoliang Zhang ◽  
Jiuhan Zheng ◽  
...  

Development of mixed matrix membranes (MMMs) with excellent permeance and selectivity applied for gas separation has been the focus of world attention. However, preparation of high-quality MMMs still remains a big challenge due to the lack of enough interfacial interaction. Herein, ionic liquid (IL)-modified UiO-66-NH2 filler was first incorporated into microporous organic polymer material (PIM-1) to prepare dense and defect-free mixed matrix membranes via a coating modification and priming technique. IL [bmim][Tf2N] not only improves the hydrophobicity of UiO-66-NH2 and facilitates better dispersion of UiO-66-NH2 nanoparticles into PIM-1 matrix, but also promotes the affinity between MOFs and polymer, sharply reducing interface non-selective defects of MMMs. By using this strategy, we can not only facilely synthesize high-quality MMMs ignoring non-selective interfacial voids, but also structurally regulate MOF nanoparticles in the polymer substrate and greatly improve interface compatibility and stability of MMMs. The method also gives suitable level of generality for fabrication of versatile defect-free MMMs based on different combination of MOFs and PIMs. The prepared UiO-66-NH2@IL/PIM-1 membrane exhibited outstanding gas separation behavior with large CO2 permeation of 8283.4 Barrer and high CO2/N2 selectivity of 22.5.


2020 ◽  
Vol 12 (43) ◽  
pp. 49101-49110 ◽  
Author(s):  
Xiangyu Bi ◽  
Yong’an Zhang ◽  
Feng Zhang ◽  
Shenxiang Zhang ◽  
Zhenggong Wang ◽  
...  

2021 ◽  
Vol 0 (0) ◽  
Author(s):  
Mehtap Safak Boroglu ◽  
Ismail Boz ◽  
Busra Kaya

Abstract In our study, the synthesis of zeolitic imidazolate framework (ZIF-12) crystals and the preparation of mixed matrix membranes (MMMs) with various ZIF-12 loadings were targeted. The characterization of ZIF-12 and MMMs were carried out by Fourier transform infrared spectroscopy analysis, thermogravimetric analysis, scanning electron microscopy (SEM), and thermomechanical analysis. The performance of MMMs was measured by the ability of binary gas separation. Commercial polyetherimide (PEI-Ultem® 1000) polymer was used as the polymer matrix. The solution casting method was utilized to obtain dense MMMs. In the SEM images of ZIF-12 particles, the particles with a rhombic dodecahedron structure were identified. From SEM images, it was observed that the distribution of ZIF-12 particles in the MMMs was homogeneous and no agglomeration was present. Gas permeability experiments of MMMs were measured for H2, CO2, and CH4 gases at steady state, at 4 bar and 35 °C by constant volume-variable pressure method. PEI/ZIF-12-30 wt% MMM exhibited high permeability and ideal selectivity values for H2/CH4 and CO2/CH4 were P H 2 / CH 4 = 331.41 ${P}_{{\text{H}}_{2}/{\text{CH}}_{4}}=331.41$ and P CO 2 / CH 4 = 53.75 ${P}_{{\text{CO}}_{2}/{\text{CH}}_{4}}=53.75$ gas pair.


2021 ◽  
Vol 11 (2) ◽  
pp. 313-330
Author(s):  
Ovaid Mehmood ◽  
Sarah Farrukh ◽  
Arshad Hussain ◽  
Mohammad Younas ◽  
Zarrar Salahuddin ◽  
...  

2012 ◽  
Vol 35 (5) ◽  
pp. 885-892 ◽  
Author(s):  
H. Karkhanechi ◽  
H. Kazemian ◽  
H. Nazockdast ◽  
M. R. Mozdianfard ◽  
S. M. Bidoki

Sign in / Sign up

Export Citation Format

Share Document