Effect of new metal–organic framework (zeolitic imidazolate framework [ZIF-12]) in mixed matrix membranes on structure, morphology, and gas separation properties

2021 ◽  
Vol 0 (0) ◽  
Author(s):  
Mehtap Safak Boroglu ◽  
Ismail Boz ◽  
Busra Kaya

Abstract In our study, the synthesis of zeolitic imidazolate framework (ZIF-12) crystals and the preparation of mixed matrix membranes (MMMs) with various ZIF-12 loadings were targeted. The characterization of ZIF-12 and MMMs were carried out by Fourier transform infrared spectroscopy analysis, thermogravimetric analysis, scanning electron microscopy (SEM), and thermomechanical analysis. The performance of MMMs was measured by the ability of binary gas separation. Commercial polyetherimide (PEI-Ultem® 1000) polymer was used as the polymer matrix. The solution casting method was utilized to obtain dense MMMs. In the SEM images of ZIF-12 particles, the particles with a rhombic dodecahedron structure were identified. From SEM images, it was observed that the distribution of ZIF-12 particles in the MMMs was homogeneous and no agglomeration was present. Gas permeability experiments of MMMs were measured for H2, CO2, and CH4 gases at steady state, at 4 bar and 35 °C by constant volume-variable pressure method. PEI/ZIF-12-30 wt% MMM exhibited high permeability and ideal selectivity values for H2/CH4 and CO2/CH4 were P H 2 / CH 4 = 331.41 ${P}_{{\text{H}}_{2}/{\text{CH}}_{4}}=331.41$ and P CO 2 / CH 4 = 53.75 ${P}_{{\text{CO}}_{2}/{\text{CH}}_{4}}=53.75$ gas pair.

2018 ◽  
Vol 7 (3) ◽  
pp. 1 ◽  
Author(s):  
Tina Chakrabarty ◽  
Pradeep Neelakanda ◽  
Klaus-Viktor Peinemann

CO2 removal is necessary to mitigate the effects of global warming but it is a challenging process to separate CO2 from natural gas, biogas, and other gas streams. Development of hybrid membranes by use of polymers and metal-organic framework (MOF) particles is a viable option to overcome this challenge. A ZIF-7 nano-filler that was synthesized in our lab was embedded into a designed polymer matrix at various loadings and the performance of the mixed matrix membranes was evaluated in terms of gas permeance and selectivity. Hybrid membranes with various loadings (20, 30 and 40 wt%) were developed and tested at room temperature by a custom made time lag equipment and a jump in selectivity was observed when compared with the pristine polymer. A commercially attractive region for the selectivity CO2 over CH4 was achieved with a selectivity of 39 for 40 wt% particle loading. An increase in selectivity was observed with the increase of ZIF-7 loadings. Best performance was seen at 40% ZIF-7 loaded membrane with an ideal selectivity of 39 for CO2 over CH4. The obtained selectivity was 105% higher for CO2 over CH4 than the selectivity of the pristine polymer with a slight decrease in permeance. Morphological characterization of such developed membranes showed an excellent compatibility between the polymer and particle adhesion.


2018 ◽  
Vol 42 (14) ◽  
pp. 12013-12023 ◽  
Author(s):  
Elahe Ahmadi Feijani ◽  
Hossein Mahdavi ◽  
Ahmad Tavassoli

A CuBTC (copper(ii) benzene-1,3,5-tricarboxylate) metal organic framework (MOF) and graphene oxide (GO) nanosheets were introduced into a semi-crystalline PVDF to produce mixed matrix membranes (MMMs) to promote gas separation performance.


2020 ◽  
Vol 40 (6) ◽  
pp. 459-467 ◽  
Author(s):  
Putu Doddy Sutrisna ◽  
Emma Savitri

AbstractThe production of biomethane from the biogas purification process depends on the capacity of the separation technique employed to separate methane from carbon dioxide. Mixed matrix membranes (MMMs) combine the benefits of polymeric and inorganic materials, and it is believed that the trade-off between gas permeability and selectivity in polymeric membranes can be hampered by MMMs. Until recently, the development of MMMs for the biogas purification process has been constrained in lab scales. To be applied in large scales, the increase in gas permeability as well as the membrane performance under the influence of CO2 plasticization needs to be investigated. This paper reports the evaluation of gas permeability and CO2/CH4 gas separation performances of nano zeolitic imidazolate framework (ZIF)-8/Pebax-1657 to be used for biogas purification processes. In addition, the study on the CO2 plasticization behavior of MMMs fabricated with co-polymer Pebax was investigated. The incorporation of nanoZIF-8 particles inhibited the increase of CO2 permeability due to the reduced polymer flexibility. In addition, the diffusional selectivity of ZIF-8 improves the permeation behavior of both gases through MMMs. With nanoZIF-8/Pebax-1657 MMMs, the incorporation of particles improves the gas permeability with a slight decrease in gas selectivity, indicating a potentiality of the membranes used for biogas purification processes.


2016 ◽  
Vol 2016 ◽  
pp. 1-12 ◽  
Author(s):  
Zeynep Sumer ◽  
Seda Keskin

Atomically detailed simulations were used to examine CO2/N2separation potential of metal organic framework- (MOF-) based mixed matrix membranes (MMMs) in this study. Gas permeability and selectivity of 700 new MMMs composed of 70 different MOFs and 10 different polymers were calculated for CO2/N2separation. This is the largest number of MOF-based MMMs for which computational screening is done to date. Selecting the appropriate MOFs as filler particles in polymers resulted in MMMs that have higher CO2/N2selectivities and higher CO2permeabilities compared to pure polymer membranes. We showed that, for polymers that have low CO2permeabilities but high CO2selectivities, the identity of the MOF used as filler is not important. All MOFs enhanced the CO2permeabilities of this type of polymers without changing their selectivities. Several MOF-based MMMs were identified to exceed the upper bound established for polymers. The methods we introduced in this study will create many opportunities to select the MOF/polymer combinations with useful properties for CO2separation applications.


2021 ◽  
Vol 19 (1) ◽  
pp. 307-321
Author(s):  
Witri Wahyu Lestari ◽  
Robiah Al Adawiyah ◽  
Moh Ali Khafidhin ◽  
Rika Wijiyanti ◽  
Nurul Widiastuti ◽  
...  

Abstract The excessive use of natural gas and other fossil fuels by the industrial sector leads to the production of great quantities of gas pollutants, including CO2, SO2, and NO x . Consequently, these gases increase the temperature of the earth, producing global warming. Different strategies have been developed to help overcome this problem, including the utilization of separation membrane technology. Mixed matrix membranes (MMMs) are hybrid membranes that combine an organic polymer as a matrix and an inorganic compound as a filler. In this study, MMMs were prepared based on polyethersulfone (PES) and a type of metal–organic framework (MOF), Materials of Institute Lavoisier (MIL)-100(Al) [Al3O(H2O)2(OH)(BTC)2] (BTC: benzene 1,3,5-tricarboxylate) using a phase inversion method. The influence on the properties of the produced membranes by addition of 5, 10, 20, and 30% MIL-100(Al) (w/w) to the PES was also investigated. Fourier-transform infrared spectroscopy (FTIR) analysis indicated that no chemical interactions occurred between PES and MIL-100(Al). Scanning electron microscope (SEM) images showed agglomeration at PES/MIL-100(Al) 30% (w/w) and that the thickness of the dense layer increased up to 3.70 µm. After the addition of MIL-100(Al) of 30% (w/w), the permeability of the MMMs for CO2, O2, and N2 gases was enhanced by approximately 16, 26, and 14 times, respectively, as compared with a neat PES membrane. The addition of MIL-100(Al) to PES increased the thermal stability of the membranes, reaching 40°C as indicated by thermogravimetry analysis (TGA). An addition of 20% MIL-100(Al) (w/w) increased membrane selectivity for CO2/O2 from 2.67 to 4.49 (approximately 68.5%), and the addition of 10% MIL-100(Al) increased membrane selectivity for CO2/N2 from 1.01 to 2.12 (approximately 110.1%).


Author(s):  
Raymond Thür ◽  
Daan Van Havere ◽  
Niels Van Velthoven ◽  
Simon Smolders ◽  
Aran Lamaire ◽  
...  

Consistent structure-performance relationships for the design of MOF (metal-organic framework)-based mixed-matrix membranes (MMMs) for gas separation are currently scarce in MMM literature. An important step in establishing such relationships could...


2020 ◽  
Vol 58 (18) ◽  
pp. 2518-2546
Author(s):  
Joseph Winarta ◽  
Amogh Meshram ◽  
Feifei Zhu ◽  
Renjie Li ◽  
Hasan Jafar ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document