scholarly journals A genetic screen for increasing metabolic flux in the isoprenoid pathway of Saccharomyces cerevisiae : Isolation of SPT15 mutants using the screen

2016 ◽  
Vol 3 ◽  
pp. 164-172 ◽  
Author(s):  
M. Wadhwa ◽  
A.K. Bachhawat
Author(s):  
Zhi-Jiao Sun ◽  
Jia-Zhang Lian ◽  
Li Zhu ◽  
Yi-Qi Jiang ◽  
Guo-Si Li ◽  
...  

Ergosterol, a terpenoid compound produced by fungi, is an economically important metabolite serving as the direct precursor of steroid drugs. Herein, ergsosterol biosynthetic pathway modification combined with storage capacity enhancement was proposed to synergistically improve the production of ergosterol in Saccharomyces cerevisiae. S. cerevisiae strain S1 accumulated the highest amount of ergosterol [7.8 mg/g dry cell weight (DCW)] among the wild-type yeast strains tested and was first selected as the host for subsequent metabolic engineering studies. Then, the push and pull of ergosterol biosynthesis were engineered to increase the metabolic flux, overexpression of the sterol acyltransferase gene ARE2 increased ergosterol content to 10 mg/g DCW and additional overexpression of a global regulatory factor allele (UPC2-1) increased the ergosterol content to 16.7 mg/g DCW. Furthermore, considering the hydrophobicity sterol esters and accumulation in lipid droplets, the fatty acid biosynthetic pathway was enhanced to expand the storage pool for ergosterol. Overexpression of ACC1 coding for the acetyl-CoA carboxylase increased ergosterol content from 16.7 to 20.7 mg/g DCW. To address growth inhibition resulted from premature accumulation of ergosterol, auto-inducible promoters were employed to dynamically control the expression of ARE2, UPC2-1, and ACC1. Consequently, better cell growth led to an increase of ergosterol content to 40.6 mg/g DCW, which is 4.2-fold higher than that of the starting strain. Finally, a two-stage feeding strategy was employed for high-density cell fermentation, with an ergosterol yield of 2986.7 mg/L and content of 29.5 mg/g DCW. This study provided an effective approach for the production of ergosterol and other related terpenoid molecules.


2004 ◽  
Vol 70 (4) ◽  
pp. 2307-2317 ◽  
Author(s):  
Marco Sonderegger ◽  
Marie Jeppsson ◽  
Bärbel Hahn-Hägerdal ◽  
Uwe Sauer

ABSTRACT Yeast xylose metabolism is generally considered to be restricted to respirative conditions because the two-step oxidoreductase reactions from xylose to xylulose impose an anaerobic redox imbalance. We have recently developed, however, a Saccharomyces cerevisiae strain that is at present the only known yeast capable of anaerobic growth on xylose alone. Using transcriptome analysis of aerobic chemostat cultures grown on xylose-glucose mixtures and xylose alone, as well as a combination of global gene expression and metabolic flux analysis of anaerobic chemostat cultures grown on xylose-glucose mixtures, we identified the distinguishing characteristics of this unique phenotype. First, the transcript levels and metabolic fluxes throughout central carbon metabolism were significantly higher than those in the parent strain, and they were most pronounced in the xylose-specific, pentose phosphate, and glycerol pathways. Second, differential expression of many genes involved in redox metabolism indicates that increased cytosolic NADPH formation and NADH consumption enable a higher flux through the two-step oxidoreductase reaction of xylose to xylulose in the mutant. Redox balancing is apparently still a problem in this strain, since anaerobic growth on xylose could be improved further by providing acetoin as an external NADH sink. This improved growth was accompanied by an increased ATP production rate and was not accompanied by higher rates of xylose uptake or cytosolic NADPH production. We concluded that anaerobic growth of the yeast on xylose is ultimately limited by the rate of ATP production and not by the redox balance per se, although the redox imbalance, in turn, limits ATP production.


Author(s):  
Sadat M. R. Khattab ◽  
Takashi Watanabe

Glycerol is an eco-friendly solvent that enhances plant biomass decomposition via glycerolysis in many pretreatment methods. Nonetheless, inefficient conversion of glycerol to ethanol by natural Saccharomyces cerevisiae limits its use in these processes. Here, we have developed an efficient glycerol-converting yeast strain by genetically modifying the oxidation of cytosolic nicotinamide adenine dinucleotide (NADH) by an O 2 -dependent dynamic shuttle and abolishing both glycerol phosphorylation and biosynthesis in S. cerevisiae D452-2 strain, as well as vigorous expression of whole genes in the DHA-pathway ( Candid utilis glycerol facilitator, Ogataea polymorpha glycerol dehydrogenase, endogenous dihydroxyacetone kinase, and triosephosphate isomerase). The engineered strain showed conversion efficiencies (CE) up to 0.49 g ethanol/g glycerol (98% of theoretical CE), with production rate >1 g/L −1 h −1 when glycerol was supplemented in a single fed-batch fermentation in a rich medium. Furthermore, the engineered strain converted a mixture of glycerol and glucose into bioethanol (>86 g/L) with 92.8% CE. To the best of our knowledge, this is the highest reported titer of bioethanol produced from glycerol and glucose. Notably, we developed a glycerol-utilizing transformant from parent strain, which cannot utilize glycerol as a sole carbon source. The developed strain converted glycerol to ethanol with a productivity of 0.44 g/L −1 h −1 on minimal medium under semi-aerobic conditions. Our findings will promote the utilization of glycerol in eco-friendly biorefineries and integrate bioethanol and plant-oil industries. IMPORTANCE With the development of efficient lignocellulosic biorefineries, glycerol has attracted attention as an eco-friendly biomass-derived solvent that can enhance the dissociation of lignin and cell wall polysaccharides during the pretreatment process. Co-conversion of glycerol with the sugars released from biomass after glycerolysis increases the resources for ethanol production and lowers the burden of component separation. However, low conversion efficiency from glycerol and sugars limits the industrial application of this process. Therefore, the generation of an efficient glycerol-fermenting yeast will promote the applicability of integrated biorefineries. Hence, metabolic flux control in yeast grown on glycerol will lead to the generation of cell factories that produce chemicals, which will boost biodiesel and bioethanol industries. Additionally, the use of glycerol-fermenting yeast will reduce global warming and generation of agricultural waste, leading to the establishment of a sustainable society.


2018 ◽  
Vol 44 ◽  
pp. S115
Author(s):  
P. Comas Sanchez ◽  
I. Martinez Monge ◽  
M. Lecina ◽  
A. Casablancas ◽  
J.J. Cairó Badillo

PLoS ONE ◽  
2017 ◽  
Vol 12 (5) ◽  
pp. e0176085 ◽  
Author(s):  
Joonhyuk Choi ◽  
Abbhirami Rajagopal ◽  
Yi-Fan Xu ◽  
Joshua D. Rabinowitz ◽  
Erin K. O’Shea

2020 ◽  
Vol 7 (4) ◽  
pp. 135
Author(s):  
Jan Niklas Bröker ◽  
Boje Müller ◽  
Dirk Prüfer ◽  
Christian Schulze Gronover

Farnesyl diphosphate (FPP)-derived isoprenoids represent a diverse group of plant secondary metabolites with great economic potential. To enable their efficient production in the heterologous host Saccharomyces cerevisiae, we refined a metabolic engineering strategy using the CRISPR/Cas9 system with the aim of increasing the availability of FPP for downstream reactions. The strategy included the overexpression of mevalonate pathway (MVA) genes, the redirection of metabolic flux towards desired product formation and the knockout of genes responsible for competitive reactions. Following the optimisation of culture conditions, the availability of the improved FPP biosynthesis for downstream reactions was demonstrated by the expression of a germacrene synthase from dandelion. Subsequently, biosynthesis of significant amounts of germacrene-A was observed in the most productive strain compared to the wild type. Thus, the presented strategy is an excellent tool to increase FPP-derived isoprenoid biosynthesis in yeast.


Sign in / Sign up

Export Citation Format

Share Document