Effects of Mycoplasma pneumoniae infection on sphingolipid metabolism in human lung carcinoma A549 cells

2009 ◽  
Vol 46 (2) ◽  
pp. 63-72 ◽  
Author(s):  
Yuanyuan Yu ◽  
Gongping Sun ◽  
Guangyi Liu ◽  
Yingshuo Wang ◽  
Zhengping Shao ◽  
...  
2018 ◽  
Vol 392 (4) ◽  
pp. 427-436 ◽  
Author(s):  
Louis W. C. Chow ◽  
Ka-Shun Cheng ◽  
Fai Leong ◽  
Chi-Wai Cheung ◽  
Lian-Ru Shiao ◽  
...  

1997 ◽  
Vol 53 (5) ◽  
pp. 747-754 ◽  
Author(s):  
Emiko L. Hatcher ◽  
Judith M. Alexander ◽  
Y.James Kang

2008 ◽  
Vol 76 (10) ◽  
pp. 4405-4413 ◽  
Author(s):  
Gongping Sun ◽  
Xuefeng Xu ◽  
Yingshuo Wang ◽  
Xiaoyun Shen ◽  
Zhimin Chen ◽  
...  

ABSTRACT Mycoplasma pneumoniae is a frequent cause of community-acquired bacterial respiratory infections in children and adults. In the present study, using a proteomic approach, we studied the effects of M. pneumoniae infection on the protein expression profile of A549 human lung carcinoma cells. M. pneumoniae infection induced changes in the expression of cellular proteins, in particular a group of proteins involved in the oxidative stress response, such as glucose-6-phosphate 1-dehydrogenase, NADH dehydrogenase (ubiquinone) Fe-S protein 2, and ubiquinol-cytochrome c reductase complex core protein I mitochondrial precursor. The oxidative status of M. pneumoniae-infected cells was evaluated, and the results revealed that M. pneumoniae infection indeed caused generation of reactive oxygen species (ROS). It was further shown that M. pneumoniae infection also induced DNA double-strand breaks, as demonstrated by the formation of γH2AX foci. On the other hand, an ROS scavenger, N-acetylcysteine, could inhibit the ROS generation, as well as decrease γH2AX focus formation. This is the first report showing that M. pneumoniae infection can directly induce DNA damage, at least partially, through the generation of ROS, and thus this report strengthens the powerful application of proteomics in the study of the pathogenesis of M. pneumoniae.


Sign in / Sign up

Export Citation Format

Share Document