Suppressive subtractive hybridization reveals different gene expression between high and low virulence strains of Cladosporium cladosporioides

2016 ◽  
Vol 100 ◽  
pp. 276-284 ◽  
Author(s):  
Yu Gu ◽  
Yanfang Liu ◽  
Sanjie Cao ◽  
Xiaobo Huang ◽  
Zhicai Zuo ◽  
...  
Insects ◽  
2020 ◽  
Vol 11 (3) ◽  
pp. 199
Author(s):  
Zih-Ting Chang ◽  
Chong-Yu Ko ◽  
Ming-Ren Yen ◽  
Yue-Wen Chen ◽  
Yu-Shin Nai

The microsporidium Nosema ceranae is a high prevalent parasite of the European honey bee (Apis mellifera). This parasite is spreading across the world into its novel host. The developmental process, and some mechanisms of N. ceranae-infected honey bees, has been studied thoroughly; however, few studies have been carried out in the mechanism of gene expression in N. ceranae during the infection process. We therefore performed the suppressive subtractive hybridization (SSH) approach to investigate the candidate genes of N. ceranae during its infection process. All 96 clones of infected (forward) and non-infected (reverse) library were dipped onto the membrane for hybridization. A total of 112 differentially expressed sequence tags (ESTs) had been sequenced. For the host responses, 20% of ESTs (13 ESTs, 10 genes, and 1 non-coding RNA) from the forward library and 93.6% of ESTs (44 ESTs, 28 genes) from the reverse library were identified as differentially expressed genes (DEGs) of the hosts. A high percentage of DEGs involved in catalytic activity and metabolic processes revealed that the host gene expression change after N. ceranae infection might lead to an unbalance of physiological mechanism. Among the ESTs from the forward library, 75.4% ESTs (49 ESTs belonged to 24 genes) were identified as N. ceranae genes. Out of 24 N. ceranae genes, nine DEGs were subject to real-time quantitative reverse transcription PCR (real-time qRT-PCR) for validation. The results indicated that these genes were highly expressed during N. ceranae infection. Among nine N. ceranae genes, one N. ceranae gene (AAJ76_1600052943) showed the highest expression level after infection. These identified differentially expressed genes from this SSH could provide information about the pathological effects of N. ceranae. Validation of nine up-regulated N. ceranae genes reveal high potential for the detection of early nosemosis in the field and provide insight for further applications.


Genome ◽  
2009 ◽  
Vol 52 (5) ◽  
pp. 409-418 ◽  
Author(s):  
Saber Golkari ◽  
Jeannie Gilbert ◽  
Tomohiro Ban ◽  
J. Douglas Procunier

Fusarium head blight, predominantly caused by Fusarium graminearum (Schwabe) in North America, is a destructive disease that poses a serious threat to wheat ( Triticum aestivum L.) production around the world. cDNA microarrays consisting of wheat ESTs derived from a wheat – F. graminearum interaction suppressive subtractive hybridization library were used to investigate QTL-specific differential gene expression between the resistant Chinese cultivar Sumai-3 and two susceptible near isogenic lines (NILs) following inoculation with F. graminearum. Stringent conditions were employed to reduce the false discovery rate. A total of 25 wheat unigenes were found to express differentially in response to F. graminearum infection. Genes encoding pathogenesis-related (PR) proteins such as β-1,3-glucanase (PR-2), wheatwins (PR-4), and thaumatin-like proteins (PR-5) showed a significant upregulation in genotypes having the Sumai-3 3BS region. For these three genes, the gene activity was significantly less in the genotype (NIL-3) lacking the Sumai-3 3BS segment. Significant upregulation of phenylalanine ammonia-lyase was detected only in the resistant Sumai-3, indicating the importance of both the 2AL and 3BS regions in the activation of effective defense responses to infection by F. graminearum. Differences in gene expression between the resistant Sumai-3 and the susceptible NILs were found to be mainly quantitative in nature.


2006 ◽  
Vol 74 (7) ◽  
pp. 4064-4074 ◽  
Author(s):  
Mónica Oleastro ◽  
Lurdes Monteiro ◽  
Philippe Lehours ◽  
Francis Mégraud ◽  
Armelle Ménard

ABSTRACT Peptic ulcer disease (PUD) occurs after a long-term Helicobacter pylori infection. However, the disease can develop earlier, and rare cases have been observed in children, suggesting that these H. pylori strains may be more virulent. We used suppressive subtractive hybridization for comparative genomics between H. pylori strains isolated from a 5-year-old child with duodenal ulcer and from a sex- and age-matched child with gastritis only. The prevalence of the 30 tester-specific subtracted sequences was determined on a collection of H. pylori strains from children (15 ulcers and 30 gastritis) and from adults (46 ulcers and 44 gastritis). Two of these sequences, jhp0562 (80.0% versus 33.3%, P = 0.008) and jhp0870 (80.0% versus 36.7%, P = 0.015), were highly associated with PUD in children and a third sequence, jhp0828, was less associated (40.0% versus 10.0%, P = 0.048). Among adult strains, none of the 30 sequences was associated with PUD. However, both jhp0562 and jhp0870 were less prevalent in adenocarcinoma strains than in PUD strains from children and adults, the difference being statistically significant for jhp0870. In conclusion, two H. pylori genes were identified as being strongly associated with PUD in children, and their putative roles as an outer membrane protein for jhp0870 and in lipopolysaccharide biosynthesis for jhp0562, suggest that they may be novel virulence factors of H. pylori.


Sign in / Sign up

Export Citation Format

Share Document