Location of 6-azonia-spiro- [5,5]-undecane molecules in ZSM-12 using X-ray synchrotron powder diffraction data

2020 ◽  
Vol 307 ◽  
pp. 110505
Author(s):  
Annalisa Martucci ◽  
Lara Gigli ◽  
Jasper Rikkert Plaisier
2009 ◽  
Vol 65 (4) ◽  
pp. 481-487 ◽  
Author(s):  
Kenny Ståhl ◽  
Jens E. T. Andersen ◽  
Irene Shim ◽  
Stephan Christgau

The crystal structures of strontium diformate in space groups P212121 (α form, 295 K), P41212 (β form, 334 and 540 K) and I41/amd (δ form, 605 K), and strontium fumarate in space groups Fddd (β form, 105 K) and I41/amd (α form, 293 K) have been determined from synchrotron X-ray powder diffraction data. Except for the α-strontium diformate, all the structures are based on a diamond-like Sr-ion arrangement, as in strontium acetylene dicarboxylate. The formate ions are disordered in the δ phase owing to steric hindrance. The fumarate ions are disordered over four (α) or two (β) symmetry-equivalent orientations. α-Strontium fumarate crystallizes with a unique 90° carboxylate dihedral angle, and is stable up to 773 K.


2015 ◽  
Vol 30 (4) ◽  
pp. 370-371
Author(s):  
J.A. Kaduk ◽  
K. Zhong ◽  
T.N. Blanton ◽  
S. Gates ◽  
T.G. Fawcett

The room-temperature crystal structure of levothyroxine sodium pentahydrate has been refined using synchrotron powder diffraction data. The compound crystallizes in space group P1 (#1) with a = 8.2489(4), b = 9.4868(5), c = 15.8298(6) Å, α = 84.1387(4), β = 83.1560(3), γ = 85.0482(3) deg, V = 1220.071(9) Å3, and Z = 2. Hydrogen atoms (missing from the previously-reported structure) were included.


2006 ◽  
Vol 21 (1) ◽  
pp. 56-58 ◽  
Author(s):  
Hector Novoa de Armas ◽  
Oswald M. Peeters ◽  
Norbert Blaton ◽  
Dirk J. A. De Ridder ◽  
Henk Schenk

The indexed powder diffraction pattern and related crystallographic data for polymorphic form 2 of carnidazole (C8H12N4O3S) are reported, as a first step in the structure determination by powder diffraction methods. The unit cell dimensions were determined from high resolution synchrotron powder diffraction data (λ=0.079 998 0 nm) and evaluated by indexing programs. The monoclinic cell found for this polymorph is a=1.3908(2) nm, b=08094(2) nm, c=1.0645(2) nm, β=110.82(2)°,V=1.12015(27)nm3, Z=4, Dx=1.445 Mg∕m3.


Crystals ◽  
2019 ◽  
Vol 9 (8) ◽  
pp. 384 ◽  
Author(s):  
Zachary R. Butler ◽  
James A. Kaduk ◽  
Amy M. Gindhart ◽  
Thomas N. Blanton

The crystal structure of fosfomycin tromethamine has been solved and refined using synchrotron X-ray powder diffraction data, and optimized using density functional techniques. Fosfomycin tromethamine crystallizes in space group P1 (#1) with a = 6.20421(6), b = 9.00072(7), c = 10.91257(15) Å, α = 93.4645(5), β = 101.9734(3), γ = 99.9183(2)°, V = 584.285(2) Å3, and Z = 2. A network of discrete hydrogen bonds links the cations and anions into layers parallel to the ab-plane. The outer surfaces of the layers are composed of the methyloxirane rings of the anions and the methylene groups of the cations. Furthermore, 93% of the atoms are consistent with an additional (pseudo)center of symmetry. The powder pattern has been submitted to ICDD® for inclusion in the Powder Diffraction File™.


2008 ◽  
Vol 23 (1) ◽  
pp. 10-14 ◽  
Author(s):  
Jeffrey E. Post ◽  
Peter J. Heaney ◽  
Andreas Ertl

Rietveld refinement using synchrotron powder X-ray diffraction data of the ranciéite, Ca0.19K0.01(Mn4+0.91◻0.09)O2⋅0.63H2O, crystal structure reveals significant differences from that reported previously. The interlayer H2O molecules occupy sites halfway between the Mn,O octahedral sheets. The Mn sites in the octahedral sheets have 10% vacancies, and the mean Mn–O distance indicates that all Mn is tetravalent (Mn4+). The interlayer Ca cations are located above and below the Mn vacancies and are octahedrally coordinated to three O2 atoms in the octahedral sheet and three H2O molecules in the interlayer.


2017 ◽  
Vol 50 (2) ◽  
pp. 451-461 ◽  
Author(s):  
Alessandra Taris ◽  
Massimiliano Grosso ◽  
Mariarosa Brundu ◽  
Vincenzo Guida ◽  
Alberto Viani

In this work, multivariate statistical techniques are employed to determine patterns and conversion curves from time-resolved X-ray powder diffraction data. For these purposes, time-window statistical total correlation spectroscopy is introduced for the pattern matching of the crystalline phase and is shown to be effective even in the case of overlapping peaks. When combined with evolving factor analysis and multivariate curve resolution–alternating least squares, this technique allows a definite estimation of patterns and conversion curves. The procedure is applied to in situ synchrotron powder diffraction patterns to monitor the setting reaction of magnesium potassium phosphate ceramic (MKP) from magnesia (MgO) and potassium dihydrogen phosphate. It is shown that the phases involved in the reaction are clearly distinguished and their evolution is correctly described. The conversion curves estimated with the proposed procedure are compared with the ones determined with the peak integration method, leading to an excellent agreement (Pearson's correlation coefficient equal to 0.9995 and 0.9998 for MgO and MKP, respectively). The approach also allows for the detection and description of the evolution of amorphous phases that cannot be described through conventional analysis of powder diffraction data.


2013 ◽  
Vol 28 (S2) ◽  
pp. S481-S490
Author(s):  
Oriol Vallcorba ◽  
Anna Crespi ◽  
Jordi Rius ◽  
Carles Miravitlles

The viability of the direct-space strategy TALP (Vallcorba et al., 2012b) to solve crystal structures of molecular compounds from laboratory powder diffraction data is shown. The procedure exploits the accurate metric refined from a ‘Bragg-Brentano’ powder pattern to extract later the intensity data from a second ‘texture-free’ powder pattern with the DAJUST software (Vallcorba et al., 2012a). The experimental setup for collecting this second pattern consists of a circularly collimated X-ray beam and a 2D detector. The sample is placed between two thin Mylar® foils, which reduces or even eliminates preferred orientation. With the combination of the DAJUST and TALP software a preliminary but rigorous structural study of organic compounds can be carried out at the laboratory level. In addition, the time-consuming filling of capillaries with diameters thinner than 0.3mm is avoided.


2003 ◽  
Vol 12 (3) ◽  
pp. 310-314
Author(s):  
Chen Jian-Rong ◽  
Gu Yuan-Xin ◽  
Fan Hai-Fu

2010 ◽  
Vol 25 (3) ◽  
pp. 247-252 ◽  
Author(s):  
F. Laufek ◽  
J. Návrátil

The crystal structure of skutterudite-related phase IrGe1.5Se1.5 has been refined by the Rietveld method from laboratory X-ray powder diffraction data. Refined crystallographic data for IrGe1.5Se1.5 are a=12.0890(2) Å, c=14.8796(3) Å, V=1883.23(6) Å3, space group R3 (No. 148), Z=24, and Dc=8.87 g/cm3. Its crystal structure can be derived from the ideal skutterudite structure (CoAs3), where Se and Ge atoms are ordered in layers perpendicular to the [111] direction of the original skutterudite cell. Weak distortions of the anion and cation sublattices were also observed.


Sign in / Sign up

Export Citation Format

Share Document