Effect of postsynthesis preparation methods on catalytic performance of Ti-Beta zeolite in ketonization of propionic acid

2022 ◽  
Vol 330 ◽  
pp. 111625
Author(s):  
Zijun Yang ◽  
Qiang Yu ◽  
Yonghua Guo ◽  
Xiaoxia Wu ◽  
Hua Wang ◽  
...  
RSC Advances ◽  
2017 ◽  
Vol 7 (16) ◽  
pp. 9551-9561 ◽  
Author(s):  
An Li ◽  
Chen Huang ◽  
Cai-Wu Luo ◽  
Wen-Jun Yi ◽  
Zi-Sheng Chao

Quinoline was synthesized via the typical Skraup approach with a vapor-phase process. The mesoporous Ni/beta zeolite catalyst exhibited high-efficiency catalytic activity and an enhanced ability of anti-deactivation.


2010 ◽  
Vol 148-149 ◽  
pp. 924-928
Author(s):  
Xue Min Yan ◽  
Yuan Zhu Mi

Two kinds of mesoporous HPW/SiO2 composites, which have been synthesized respectively by the amino-functionalized (AF) method and evaporation-induced self-assembly (EISA) method, have been used as catalysts in the oxidative desulfurization process of dibenzothiophene(DBT). The catalytic performance results show that the catalyst synthesized by EISA method holds higher catalytic activity than that synthesized by the AF method. The difference of catalytic activity can be attributed to the different synthesis mechanism of two kinds of composites. In the AF method, the bonding force between HPW and SiO2 is strong acid-base interaction, which damages the Keggin structure. Whereas in the EISA process, electrostatic force and hydrogen bonds between W=O groups and Si-OH groups are main bonding forces. The hydrogen bond holds the electron-withdrawing effect, which increases the activity of nonbonding W=O groups in HPW and then results in the enhancement of the catalytic activity.


Author(s):  
Shengqiang Zhou ◽  
Lipeng Zhou ◽  
Yunlai Su ◽  
Xiaomei Yang ◽  
Hao He

2021 ◽  
Vol 49 (2) ◽  
pp. 211-219
Author(s):  
Yan-hong QUAN ◽  
Chao MIAO ◽  
Tao LI ◽  
Na WANG ◽  
Meng-meng WU ◽  
...  

2016 ◽  
Vol 723 ◽  
pp. 633-639
Author(s):  
Waenkaew Pantupho ◽  
Arthit Neramittagapong ◽  
Nuttawut Osakoo ◽  
Jatuporn Wittayakun ◽  
Sirinuch Loiha

Iron-supported HZSM-5 catalysts were prepared by hydrothermal (Fe-HZSM-5_HYD) and impregnation methods (Fe/HZSM-5_IMP). The active species of binuclear-iron complex and iron-substituted zeolite framework, confirmed by EXAFS analysis, were observed on Fe/HZSM-5_IMP and Fe-HZSM-5_HYD, respectively. The catalysts were used for production of dimethyl ether (DME) by methanol dehydration at 200-350 °C using fixed bed flow reactor. Fe/HZSM-5_IMP showed higher catalytic conversion than Fe-HZSM-5_HYD. However, the Fe/HZSM-5_IMP catalyst was less selective to DME product and strongly deactivated for 24h. The deactivation might due to transformation of binuclear-iron to the a-iron site which was strong acidic strengh. The iron-substituted zeolite framework of Fe-HZSM-5_HYD showed high stability toward methanol dehydration. Moreover, the catalyst showed advantages of good selective to DME and low carbon deposition on surface. These results suggested that the iron-substituted zeolite framework structure could improve catalytic performance for mrthanol dehydration.


2019 ◽  
Vol 19 (6) ◽  
pp. 3187-3196 ◽  
Author(s):  
Maria Mihet ◽  
Gabriela Blanita ◽  
Monica Dan ◽  
Lucian Barbu-Tudoran ◽  
Mihaela D Lazar

Pt/UiO-66 nanocomposites with platinum target concentration of 3 wt.% were prepared by 3 preparation methods, characterized and tested in the CO2 methanation process. Choice of the microporous UiO-66 metal-organic framework (Zr6O4(OH)4 with 1,4-benzene-dicarboxylate ligand) as catalytic support was motivated by the CO2 chemisorption capacity (proven by CO2-TPD profiles), large specific surface area (1477 m2/g) which favors a high dispersion of metal nanoparticles and good thermal stability. The preparation methods for the Pt/UiO-66 nanocomposites are: (1) wetimpregnation followed by reduction in H2 at 200 °C for 2 h; (2) wet-impregnation followed by reduction with an aqueous solution of NaBH4; and (3) “double-solvent” method, followed by reduction with NaBH4. The UiO-66 based nanocomposites were characterized by N2 adsorption–desorption (BET method), XRD, and SEM/TEM. The Pt/UiO-66 catalyst prepared by method 3 was chosen for catalytic testing due to its highest surface area, smallest platinum nanoparticles (PtNPs) size, the localization of PtNPs both on the grain’s internal and external surface and best thermal stability in the desired temperature range. Its capacity to adsorb and activate CO2 and H2 was evaluated in thermo-programmed desorption experiments (H2-TPD and CO2-TPD). Hydrogen is molecularly adsorbed, while CO2 is adsorbed both molecularly and dissociatively. The catalytic performance in the CO2 methanation process was evaluated by Temperature Programmed Reactions (TPRea, 2 °C/min, 30–350 °C), at atmospheric pressure. The best results were obtained at 350 °C, CO2:H2 molar ratio of 1:5.2 and GHSV ═ 1650 h−1. In these conditions CO2 conversion is almost 50% and CH4 selectivity is 36%, the rest of the converted CO2 being transformed in CO.


2018 ◽  
Vol 26 (4) ◽  
pp. 761-767 ◽  
Author(s):  
Xu Wang ◽  
Jianli Zhang ◽  
Jingyu Chen ◽  
Qingxiang Ma ◽  
Subing Fan ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document