silica source
Recently Published Documents


TOTAL DOCUMENTS

266
(FIVE YEARS 63)

H-INDEX

26
(FIVE YEARS 3)

2021 ◽  
Vol 21 (2) ◽  
pp. 170
Author(s):  
Thet Mya Mya Sein ◽  
Ei Mon Aung

In this paper, Erianthus plant, a grass type of lignocellulosic biomass, is presented as an alternative source for the production of amorphous silica. Thermal treatment (combustion) of Erianthus plant under a controlled temperature of 600–900°C produces Erianthus Ash (EA). Then, silica powder was extracted from EA by the chemical extraction method. In this work, the effect of treatment temperature on the preparation of EA and extracted silica is studied. The EA samples and extracted silica are noted as EA600 – EA900 and Si600 – Si900 respectively with respect to the treatment temperature. To evaluate the effect of the concentration of NaOH solution on the purity of silica, NaOH solution (2–3 N) is verified in this work. The results revealed that the pure amorphous silica can be extracted using a 2.5 N NaOH solution from EA800. The percentage of amorphous silica with a purity of about 99% was confirmed by X-Ray Fluorescence (XRF).


2021 ◽  
Vol 2145 (1) ◽  
pp. 012029
Author(s):  
Oranut Yosma ◽  
Chalad Yuenyao

Abstract This research aims to synthesize a silica xerogel from rice straw that is a residue biomass generating from agriculture. Purity and morphological structure of synthesized silica xerogel are also studied. The first step of the synthesis is the preparation of sodium silicate from rice straw ash that is then used as silica source. To prepare a silica source, pretreated rice straw was burnt at 700 °C for 2 h to obtain a rice straw ash. After that resulted rice straw ash is washed and reacted with 1.0 M HCl and 2.0 M NaOH aqueous solution at 80 °C for 1 h, respectively. The reacted solution is then filtrated two times by a no.41 filter paper and ion exchange resin, respectively. The obtained sodium silicate is mixed with 1.0 M HCl under stirring for 6 h to produce the nano-silica. To increase the purity of nano-silica xerogels, as-synthesized silica was washed with deionized water for 3 times. Washed silica is dried in electric oven at 85 °C overnight and calcined at 500 °C for 5 h. Scanning electron microscopy/energy dispersive x-ray spectrometry (SEM/EDS) and % whiteness are employed to evaluate the morphology and purity of particles. Experimental results showed that nano-silica with purity up to 99.0 wt% was completely synthesized. Different morphological structure of silica synthesized under pH of 7, 8 and 9 were obtained.


2021 ◽  
pp. 1-17
Author(s):  
Brette S. Harris ◽  
Maya T. LaGrange ◽  
Sara K. Biddle ◽  
Tiffany L. Playter ◽  
Kathryn M. Fiess ◽  
...  

The Hare Indian Formation (HIF) is a late Eifelian to Givetian organic-rich mudstone constituting the lower portion of the Horn River Group (HRG), which has been minimally scrutinized in the literature. This paper proposes depositional environments and a sequence stratigraphic framework for the HIF. Using composition data collected via energy-dispersive X-ray fluorescence, geochemical proxies inform detrital input, silica source, and paleoredox conditions. Cross-plots and chemostratigraphic profiles of detritally sourced Al, Ti, and K and redox-sensitive Mo and V inform depositional and stratigraphic constraints. Silica proportions vary, indicating that sediment was derived from detrital and biogenic sources. Al, Ti, and K distributions increase upwards, showing increased continentally sourced minerals. Redox-sensitive metals are highest in the Bluefish Member (BM), suggesting intermittent euxinia. Based on the presence of continental and pelagic sediments, the sedimentary environment is interpreted as proximal- to mid-shelf. These proxies guide systems tract interpretations. Si and redox-sensitive metal concentrations peak higher in the BM, accompanied by lowered concentrations of Al, Ti, and K, suggesting a maximum flooding surface. At the top of the Prohibition and Bell Creek members, redox-sensitive enrichments are lower with higher concentrations of Al, Ti, and K, suggesting a maximum regressive surface. Transgression occurred during the initial deposition of the BM, followed by regression for the remainder of the HIF. The sedimentology of the HIF can be difficult to decipher; the use of chemostratigraphy supports its geological history (including sedimentation trends and a local record of relative sea level) using methods that may be applied to other fine-grained successions.


2021 ◽  
Vol 45 (171) ◽  
pp. 85-95
Author(s):  
Victor De Aguilar Pedott ◽  
Iemedelais Bordin ◽  
Carolina Elisa Demaman Oro ◽  
Ricardo Jorge Macieski ◽  
Diego Ivan Petkowicz ◽  
...  

The large amount of rice produced in Brazil generates a large volume of co-products, such as, Rice Husk (RH) and Rice Husk Ash (RHA). These co-products have amounts of silicon (Si) present in their structure, which can be used to synthesize silica-based materials as zeolites and MCM-type structures. The synthesis of MCM-48 material was carried out at room temperature, using the ionic liquid [C16MI·Cl] as structure-directing agent, depositing the niobium in situ during the synthesis with different molar ratios of Si/Nb (5, 20, 50 and 80). The material obtained was subjected to characterization by X-Ray Diffraction (XRD), Nitrogen Adsorption/Desorption isotherms and Scanning Electron Microscopy (SEM). The results confirm the formation of Nb/MCM-48 materials, in which their properties are consistent with those described in the literature. The deposition of Nb on MCM-48 did not change its structural properties, such as specific surface area and pore distribution for Si/Nb higher than 5. The results obtained demonstrate the success in the synthesis of mesoporous materials Nb/MCM-48 using industrial residues of rice as an alternative source of silicon, and in situ deposition of the niobium metal on the structure.


2021 ◽  
Vol 2021 ◽  
pp. 1-12
Author(s):  
Eid H. Alosaimi ◽  
Ibrahim Hotan Alsohaimi ◽  
Talal E. Dahan ◽  
Qiao Chen ◽  
Ayman Abdelaziz younes ◽  
...  

Concerns have been increased regarding the existence of pollutants in environmental water resources and their risks to the ecosystem and human society. TiO2 photocatalyst is considered as an effective photocatalyst to remove the pollutants. Herein, the mesoporous TiO2-SBA-15 was prepared using the rice husk extract as the silica source. The fabricated nanocomposites were characterized using FTIR, small and wide angle XRD, Raman spectroscopy, UV-vis, BET surface area analysis, and HRTEM. The photocatalytic efficiency of the composites for the degradation of methylene blue (MB) has been evaluated under UV irradiation. Interestingly, due to the excellent dispersion of TiO2 on the wall of SBA-15 and good hydrophilicity, the nanocomposites displayed a good catalytic activity. The higher photodegradation performance was achieved by the composite containing 10 wt% TiO2 by which the MB was fully degraded within 15-20 min of irradiation. Besides, TiO2-SBA-15 could effectively inhibit the growth of Gram-positive and Gram-negative bacteria. These results offer a practical and economic approach in the environmental management industries.


BIOEDUSCIENCE ◽  
2021 ◽  
Vol 5 (2) ◽  
Author(s):  
Cico Jhon Karunia Simamora ◽  
Ellia Septiarahma Rumambi ◽  
Tika Widya Pratiwi ◽  
Ajeng Maula Ningrum ◽  
Taris Zharfan Mias Embau

Background: CPO refining which produces solid waste namely spent bleaching earth (SBE) in large quantities can pollute the environment. SBE from bentonite ores contains large amounts of silica, so it can be an alternative source of silica minerals. Silica plays an important role in increasing plant resistance and bioactive plant compound products. Methods: The application of Si in plants can increase secondary metabolites such as phenolic and anti-fungal compounds in response to disease pathogens. However, the low solubility of silica makes silica not sufficiently available for plants. Using microorganisms as silica solubilizing bacteria helps increasing solubility of silica in the soil. Bacteria dissolve silica by removing organic acids and producing indole acetic acid (AAI), which stimulates root hairs. Results: This review presents the results of a study on the utilization of silica-rich SBE waste as a source of available silica for plants with solubilizing method using bacteria to increase plant growth and resistance, as well as increase plant secondary metabolite compounds. Conclusions: The application of silica solubilizing bacteria has been known to play an important role in providing silica for plants, through enzymatic mechanisms, namely the production of organic acids and extracellular polysaccharides.


2021 ◽  
Vol 13 (9) ◽  
Author(s):  
Rosa Crocco ◽  
Hans Huisman ◽  
Yvette Sablerolles ◽  
Julian Henderson ◽  
Bertil van Os ◽  
...  

AbstractMosaic glass tesserae were imported to Dutch sites during the Early Medieval period, probably to address the demand for coloured glass needed in ornamental bead manufacture. Although challenging, because of the uncertainty of the material’s context, the Wierum Early Medieval collection represents an extraordinary opportunity, being the most significant find of glass tesserae in the Netherlands to date. The combined use of electron microprobe analysis (EMPA) and hand-held X-ray fluorescence spectrometry (HH XRF) allowed us to examine glass tesserae and other vitreous samples from the site. Low levels for magnesium and potassium oxides (<1.5 wt%) and the chemical components linked with the silica source, fluxes, opacifiers and chromophores are compatible with an older Roman soda-lime-silica glass production. Alumina and calcium oxide contents together with the adoption of antimony-based opacifiers are compatible with mosaic tesserae of a first to third century AD Roman tradition. We assume that these tesserae were collected during the spoliation of a lavish building and reused for glass objects produced locally. The hypothesis seems to be confirmed by the presence in the collection of tesserae still embedded in mortar, stone tesserae fragments and a rounded fragment of Egyptian blue.


Micromachines ◽  
2021 ◽  
Vol 12 (7) ◽  
pp. 841
Author(s):  
Dong Tian ◽  
Yonghong Chen ◽  
Xiaoyong Lu ◽  
Yihan Ling ◽  
Bin Lin

An environmentally friendly method was proposed to prepare mesoporous Mobil Composition of Matter No.48 (MCM-48) using fly ash as the silica source. Silver nanoparticles were infiltrated on MCM-48 facilely by an in situ post-reduction method and evaluated as an effective catalyst for CO oxidation. The as-prepared MCM-48 and Ag/MCM-48 nanoparticles were characterized by XRD, N2 adsorption/desorption, and TEM. Investigations by means of XPS for Ag/MCM-48 were performed in order to illuminate the surface composition of the samples. Studies revealed the strong influence of the loading of Ag nanoparticles on catalysts in the oxidation of CO. CO conversion values for Ag/MCM-48 of 10% and 100% were achieved at temperatures of 220 °C and 270 °C, respectively, indicating that the Ag-decorated MCM-48 catalyst is extremely active for CO oxidation.


Author(s):  
Shengqiang Zhou ◽  
Lipeng Zhou ◽  
Yunlai Su ◽  
Xiaomei Yang ◽  
Hao He

Catalysts ◽  
2021 ◽  
Vol 11 (7) ◽  
pp. 808
Author(s):  
Nerea Juárez-Serrano ◽  
Desiré Berenguer ◽  
Isabel Martínez-Castellanos ◽  
Inmaculada Blasco ◽  
Maribel Beltrán ◽  
...  

The synthesis of SBA-15 has been optimized using sodium silicate, an inexpensive precursor of SBA-15. In this work, the influence of synthesis times of the precipitation and the hydrothermal treatment steps, on the textural properties developed as well as for reducing the toxic compounds generated in tobacco smoking, has been studied. The hydrothermal treatment has been proved to be necessary to obtain materials with adequate performance in this particular application. Twenty-four hours of hydrothermal treatment provide materials with the best properties. Although the reaction stage usually involves the mixing of reagents during 24 h, 40 min is enough to obtain a material with stick-like morphology and typical textural properties. Moreover, between 1 and 2 h of reaction time, the material proved to have the best performance for the purpose of reducing the toxicity of the products generated during the tobacco smoking process. These results are of great significance for an eventual scaling up to industrial scale of the SBA-15 manufacturing process. Results of a pilot plant experiment in a batch of 4 kg of SBA-15 are reported.


Sign in / Sign up

Export Citation Format

Share Document