synthesis mechanism
Recently Published Documents


TOTAL DOCUMENTS

528
(FIVE YEARS 156)

H-INDEX

47
(FIVE YEARS 9)

2022 ◽  
Vol 2022 ◽  
pp. 1-50
Author(s):  
Mahrokh Marzi ◽  
Mojtaba Farjam ◽  
Zahra Kazeminejad ◽  
Abolfazl Shiroudi ◽  
Amin Kouhpayeh ◽  
...  

A pharmacophore system has been found as 1,2,3-triazole, a five-membered heterocycle ring with nitrogen heteroatoms. These heterocyclic compounds can be produced using azide-alkyne cycloaddition processes catalyzed by ruthenium or copper. The bioactive compounds demonstrated antitubercular, antibacterial, anti-inflammatory, anticancer, antioxidant, antiviral, and antidiabetic properties. This heterocycle molecule, in particular, with one or more 1,2,3-triazole cores has been found to have the most powerful antifungal effects. The goal of this review is to highlight recent developments in the synthesis and structure-activity relationship (SAR) investigation of this prospective fungicidal chemical. Also there have been explained drugs and mechanism of action of a triazole compound with antifungal activity. This review will be useful in a variety of fields, including medicinal chemistry, organic chemistry, mycology, and pharmacology.


Author(s):  
Sara Pakseresht ◽  
Deniz Kuruahmet ◽  
Aslihan Guler ◽  
Seyma Ozcan Duman ◽  
Hatice Gungor ◽  
...  

Abstract Significant climate change and variable fossil energy prices are forcing us to minimize fossil fuel consumption and develop innovative energy conversion and storage systems capable of reducing carbon dioxide emissions. Batteries are the most common form of alternative energy systems, and cathode materials are critical for their performance. Their low-rate performance and short lifespan severely hamper the efficiency of cathode materials. The adoption of nanotechnology is essential to improve the cathode life cycle and maintain capacity. Conventional synthetic techniques face serious problems in producing complex nanomaterials with precise design, high efficiency, and long life. Recent efforts have been made to utilize bio-inspired materials in a variety of applications, emphasizing the importance of biomimetics due to their unique advantages and excellent properties. This review examines the synthesis mechanism, properties, and advances of bioinspired materials in the production of nanomaterials in order to pave the way for the future study of rechargeable batteries. Subsequently, the solutions and problems encountered by cathode materials in the main categories of secondary rechargeable batteries are addressed. The aim of this study is to alert scientists toward this promising development trend in bio-inspired battery materials.


e-Polymers ◽  
2022 ◽  
Vol 22 (1) ◽  
pp. 99-107
Author(s):  
Chen Ding ◽  
Ning Li ◽  
Zhikang Chen ◽  
Yufei Zhang

Abstract In this study, kraft lignin and epichlorohydrin (ECH) were used to prepare no-formaldehyde wood adhesives. The lignin was first treated by ball milling, then reacted with glyoxal to produce glyoxalated lignin under alkaline conditions, and then blended with ECH to prepare lignin-based formaldehyde-free adhesive. The influence of the content of ECH on the physicochemical properties of the adhesives was explored, and the possible synthesis mechanism of the ECH-modified glyoxalated lignin adhesives (glyoxalated kraft lignin-epoxy [GKLE]) was investigated. The results show that ECH was beneficial to improving the plywood shear strength and water resistance; the plywood prepared with GKLE-50 adhesive displays comparable water resistance as phenol–formaldehyde resins and its wet shear strength (type I) was 1.05 MPa, exceeding the Chinese National Standards GB/T 9846-2015. Scanning electron microscopy analysis showed that the increase of ECH content promoted the adhesive to penetrate the wood to form glue nails, improving the wet shear strength of the plywood. Chemical analysis indicated that glyoxalation was used to introduce hydroxyethyl groups into the ortho positions of the aromatic rings of lignin, and then the ring-opening reaction between glyoxalated lignin and ECH occurred forming ether bonds. Overall, lignin has displayed great potential in replacing formaldehyde-based adhesives for industrial applications.


Talanta ◽  
2022 ◽  
pp. 123228
Author(s):  
Imran Mahmood Khan ◽  
Sobia Niazi ◽  
Lin Yue ◽  
Yin Zhang ◽  
Imran Pasha ◽  
...  

Author(s):  
Gupta Jitendra ◽  
Gupta Reena ◽  
Tankara Abhishek

The design, construction, and programming of robots with overall dimensions of less than a few micrometres, as well as the programmable assembly of nanoscale items, are all part of nanorobotics. Nanobots are the next generation of medication delivery systems, as well as the ultimate nanoelectromechanical systems. Nano bioelectronics are used as the foundation for manufacturing integrated system devices with embedded nano biosensors and actuators in the nanorobot architectural paradigm, which aids in medical target identification and drug delivery. Nanotechnology advances have made it possible to create nanosensors and actuators using nano bioelectronics and biologically inspired devices. The creation of nanobots is fascinated by both top-down and bottom-up approaches. The qualities, method of synthesis, mechanism of action, element, and application of nanobots for the treatment of nervine disorders, wound healing, cancer diagnosis study, and congenital disease were highlighted in this review. This method gives you a lot of control over the situation and helps with sickness diagnosis.


Sign in / Sign up

Export Citation Format

Share Document