scholarly journals Enhancing yields of low and single copy number plasmid DNAs from Escherichia coli cells

2017 ◽  
Vol 133 ◽  
pp. 46-51 ◽  
Author(s):  
Whitney N. Wood ◽  
Kyle D. Smith ◽  
Jennifer A. Ream ◽  
L. Kevin Lewis
2003 ◽  
Vol 69 (6) ◽  
pp. 3421-3426 ◽  
Author(s):  
Sang Yup Lee ◽  
Young Lee

ABSTRACT A heterologous metabolism of polyhydroxyalkanoate (PHA) biosynthesis and degradation was established in Escherichia coli by introducing the Ralstonia eutropha PHA biosynthesis operon along with the R. eutropha intracellular PHA depolymerase gene. By with this metabolically engineered E. coli, enantiomerically pure (R)-3-hydroxybutyric acid (R3HB) could be efficiently produced from glucose. By employing a two-plasmid system, developed as the PHA biosynthesis operon on a medium-copy-number plasmid and the PHA depolymerase gene on a high-copy-number plasmid, R3HB could be produced with a yield of 49.5% (85.6% of the maximum theoretical yield) from glucose. By integration of the PHA biosynthesis genes into the chromosome of E. coli and by introducing a plasmid containing the PHA depolymerase gene, R3HB could be produced without plasmid instability in the absence of antibiotics. This strategy can be used for the production of various enantiomerically pure (R)-hydroxycarboxylic acids from renewable resources.


1982 ◽  
Vol 150 (3) ◽  
pp. 1234-1243 ◽  
Author(s):  
W Firshein ◽  
P Strumph ◽  
P Benjamin ◽  
K Burnstein ◽  
J Kornacki

Microbiology ◽  
2006 ◽  
Vol 152 (3) ◽  
pp. 657-666 ◽  
Author(s):  
Sang-Hyun Kim ◽  
Wenyi Jia ◽  
Valeria R. Parreira ◽  
Russell E. Bishop ◽  
Carlton L. Gyles

This study shows that lipid A of Escherichia coli O157 : H7 differs from that of E. coli K-12 in that it has a phosphoform at the C-1 position, which is distinctively modified by a phosphoethanolamine (PEtN) moiety, in addition to the diphosphoryl form. The pmrC gene responsible for the addition of PEtN to the lipid A of E. coli O157 : H7 was inactivated and the changes in lipid A profiles were assessed. The pmrC null mutant still produced PEtN-modified lipid A species, albeit in a reduced amount, indicating that PmrC was not the only enzyme that could be used to add PEtN to lipid A. Natural PEtN substitution was shown to be present in the lipid A of other serotypes of enterohaemorrhagic E. coli and absent from the lipid A of E. coli K-12. However, the cloned pmrC O157 gene in a high-copy-number plasmid generated a large amount of PEtN-substituted lipid A species in E. coli K-12. The occurrence of PEtN-substituted lipid A species was associated with a slight increase in the MICs of cationic peptide antibiotics, suggesting that the lipid A modification with PEtN would be beneficial for survival of E. coli O157 : H7 in certain environmental niches. However, PEtN substitution in the lipid A profiles was not detected when putative inner-membrane proteins (YhbX/YbiP/YijP/Ecf3) that show significant similarity with PmrC in amino acid sequence were expressed from high-copy-number plasmids in E. coli K-12. This suggests that these potential homologues are not responsible for the addition of PEtN to lipid A in the pmrC mutant of E. coli O157 : H7. When cells were treated with EDTA, the amount of palmitoylated lipid A from the cells carrying a high-copy-number plasmid clone of pmrC O157 that resulted in significant increase of PEtN substitution was unchanged compared with cells without PEtN substitution, suggesting that the PEtN moiety substituted in lipid A does not compensate for the loss of divalent cations required for bridging neighbouring lipid A molecules.


Genetics ◽  
1990 ◽  
Vol 126 (1) ◽  
pp. 17-24 ◽  
Author(s):  
T Kazic ◽  
D E Berg

Abstract We have examined the frequency with which identical deletions are formed in different chromosomal contexts. A panel of six mutant bla genes containing palindrome/direct repeat structures were moved from pBR322 to three locations: at lambda att, at chromosomal lac, and at F'lac. Deletion of the palindromes and one of the direct repeats results in reversion to Ampr. The frequency of deletion for all alleles declines beyond the reduction in copy number when they are moved from the multicopy plasmid environment to a single-copy chromosome. The magnitude of the declines varies in an allele-specific and location-specific manner. Our data support the hypothesis that context can influence the frequency of mutation independent of the immediate DNA sequence.


Genetics ◽  
1989 ◽  
Vol 121 (3) ◽  
pp. 423-431 ◽  
Author(s):  
B G Hall ◽  
L L Parker ◽  
P W Betts ◽  
R F DuBose ◽  
S A Sawyer ◽  
...  

Abstract IS103 is a previously unknown insertion sequence found in Escherichia coli K12. We have sequenced IS103 and find that it is a 1441-bp element that consists of a 1395-bp core flanked by imperfect 23-bp inverted repeats. IS103 causes a 6-bp duplication of the target sequence into which it inserts. There is a single copy of IS103 present in wild-type E. coli K12 strain HfrC. In strain X342 and its descendents there are two additional copies, one of which is located within the bglF gene. IS103 is capable of excising from within bglF and restoring function of that gene. IS103 exhibits 44% sequence identity with IS3, suggesting that the two insertion sequences are probably derived from a common ancestor. We have examined the distribution of IS103 in the chromosomes and plasmids of the ECOR collection of natural isolates of E. coli. IS103 is found in 36 of the 71 strains examined, and it strongly tends to inhabit plasmids rather than chromosomes. Comparison of the observed distribution of IS103 with distributions predicted by nine different models for the regulation of transposition according to copy number and of the effects of copy number on fitness suggest that transposition of IS103 is strongly regulated and that it has only minor effects on fitness. The strong clustering of IS103 within one phylogenetic subgroup of the E. coli population despite its presence on plasmids suggests that plasmids tend to remain within closely related strains and that transfer to distantly related strains is inhibited.


1999 ◽  
Vol 181 (22) ◽  
pp. 7005-7013 ◽  
Author(s):  
Mary P. McLenigan ◽  
Olga I. Kulaeva ◽  
Don G. Ennis ◽  
Arthur S. Levine ◽  
Roger Woodgate

ABSTRACT The Escherichia coli umuD and umuC genes comprise an operon and encode proteins that are involved in the mutagenic bypass of normally replication-inhibiting DNA lesions. UmuD is, however, unable to function in this process until it undergoes a RecA-mediated cleavage reaction to generate UmuD′. Many homologs ofumuDC have now been identified. Most are located on bacterial chromosomes or on broad-host-range R plasmids. One such putative homolog, humD (homolog of umuD) is, however, found on the bacteriophage P1 genome. Interestingly,humD differs from other umuD homologs in that it encodes a protein similar in size to the posttranslationally generated UmuD′ protein and not UmuD, nor is it in an operon with a cognate umuC partner. To determine if HumD is, in fact, a bona fide homolog of the prokaryotic UmuD′-like mutagenesis proteins, we have analyzed the ability of HumD to complement UmuD′ functions in vivo as well as examined HumD’s physical properties in vitro. When expressed from a high-copy-number plasmid, HumD restored cellular mutagenesis and increased UV survival to normally nonmutablerecA430 lexA(Def) and UV-sensitive ΔumuDC recA718 lexA(Def) strains, respectively. Complementing activity was reduced when HumD was expressed from a low-copy-number plasmid, but this observation is explained by immunoanalysis which indicates that HumD is normally poorly expressed in vivo. In vitro analysis revealed that like UmuD′, HumD forms a stable dimer in solution and is able to interact with E. coli UmuC and RecA nucleoprotein filaments. We conclude, therefore, that bacteriophage P1 HumD is a functional homolog of the UmuD′-like proteins, and we speculate as to the reasons why P1 might require the activity of such a protein in vivo.


Sign in / Sign up

Export Citation Format

Share Document