high copy number plasmid
Recently Published Documents


TOTAL DOCUMENTS

73
(FIVE YEARS 1)

H-INDEX

26
(FIVE YEARS 0)

2021 ◽  
Vol 20 (1) ◽  
Author(s):  
Jaewoo Son ◽  
Jun Hong Jang ◽  
In Hyeok Choi ◽  
Chang Gyu Lim ◽  
Eun Jung Jeon ◽  
...  

Abstract Background trans-cinnamic acid (t-CA) is a phenylpropanoid with a broad spectrum of biological activities including antioxidant and antibacterial activities, and it also has high potential in food and cosmetic applications. Although significant progress has been made in the production of t-CA using microorganisms, its relatively low product titers still need to be improved. In this study, we engineered Corynebacterium glutamicum as a whole-cell catalyst for the bioconversion of l-phenylalanine (l-Phe) into t-CA and developed a repeated bioconversion process. Results An expression module based on a phenylalanine ammonia lyase-encoding gene from Streptomyces maritimus (SmPAL), which mediates the conversion of l-Phe into t-CA, was constructed in C. glutamicum. Using the strong promoter PH36 and ribosome binding site (RBS) (in front of gene 10 of the T7 phage), and a high-copy number plasmid, SmPAL could be expressed to levels as high as 39.1% of the total proteins in C. glutamicum. Next, to improve t-CA production at an industrial scale, reaction conditions including temperature and pH were optimized; t-CA production reached up to 6.7 mM/h in a bioreactor under optimal conditions (50 °C and pH 8.5, using NaOH as base solution). Finally, a recycling system was developed by coupling membrane filtration with the bioreactor, and the engineered C. glutamicum successfully produced 13.7 mM of t-CA (24.3 g) from 18.2 mM of l-Phe (36 g) and thus with a yield of 75% (0.75 mol/mol) through repetitive supplementation. Conclusions We developed a highly efficient bioconversion process using C. glutamicum as a biocatalyst and a micromembrane-based cell recycling system. To the best of our knowledge, this is the first report on t-CA production in C. glutamicum, and this robust platform will contribute to the development of an industrially relevant platform for the production of t-CA using microorganisms.



2020 ◽  
Vol 21 (16) ◽  
pp. 5614 ◽  
Author(s):  
Jaewoo Son ◽  
Seung Hoon Jang ◽  
Ji Won Cha ◽  
Ki Jun Jeong

Leuconostoccitreum, a hetero-fermentative type of lactic acid bacteria, is a crucial probiotic candidate because of its ability to promote human health. However, inefficient gene manipulation tools limit its utilization in bioindustries. We report, for the first time, the development of a CRISPR (Clustered Regularly Interspaced Short Palindromic Repeats) interference (CRISPRi) system for engineering L. citreum. For reliable expression, the expression system of synthetic single guide RNA (sgRNA) and the deactivated Cas9 of Streptococcus pyogenes (SpdCas9) were constructed in a bicistronic design (BCD) platform using a high-copy-number plasmid. The expression of SpdCas9 and sgRNA was optimized by examining the combination of two synthetic promoters and Shine–Dalgarno sequences; the strong expression of sgRNA and the weak expression of SpdCas9 exhibited the most significant downregulation (20-fold decrease) of the target gene (sfGFP), without cell growth retardation caused by SpdCas9 overexpression. The feasibility of the optimized CRISPRi system was demonstrated by modulating the biosynthesis of riboflavin. Using the CRISPRi system, the expression of ribF and folE genes was downregulated (3.3-fold and 5.6-fold decreases, respectively), thereby improving riboflavin production. In addition, the co-expression of the rib operon was introduced and the production of riboflavin was further increased up to 1.7 mg/L, which was 1.53 times higher than that of the wild-type strain.



2020 ◽  
Author(s):  
Huseyin Tas ◽  
Ángel Goñi-Moreno ◽  
Víctor de Lorenzo

ABSTRACTGenetically encoded logic gates, especially inverters—NOT gates—are the building blocks for designing circuits, engineering biosensors or decision-making devices in synthetic biology. However, the repertoire of inverters readily available for different species is rather limited. In this work, a large whole of NOT gates that was shown to function previously in a specific strain of Escherichia coli, was recreated as broad host range (BHR) collection of constructs assembled in low, medium and high copy number plasmid backbones of the SEVA (Standard European Vector Architecture) collection. The input/output function of each of the gates was characterized and parameterized in the environmental bacterium and metabolic engineering chassis Pseudomonas putida. Comparisons of the resulting fluorescence cytometry data with those published for the same gates in Escherichia coli provided useful hints on the portability of the corresponding gates. The hereby described BHR inverter package (20 different versions of 12 distinct gates) thus becomes a toolbox of choice for designing genetic circuitries in a variety of Gram-negative species other than E. coli.



2019 ◽  
Vol 305 ◽  
pp. S23-S24
Author(s):  
G.A. Monteiro ◽  
S.O. Duarte ◽  
M.C. Martins ◽  
S.M. Andrade ◽  
D.M. Prazeres


2018 ◽  
Vol 11 (547) ◽  
pp. eaat5750 ◽  
Author(s):  
Maja Semanjski ◽  
Elsa Germain ◽  
Katrin Bratl ◽  
Andreas Kiessling ◽  
Kenn Gerdes ◽  
...  

The bacterial serine-threonine protein kinase HipA promotes multidrug tolerance by phosphorylating the glutamate-tRNA ligase (GltX), leading to a halt in translation, inhibition of growth, and induction of a physiologically dormant state (persistence). The HipA variant HipA7 substantially increases persistence despite being less efficient at inhibiting cell growth. We postulated that this phenotypic difference was caused by differences in the substrates targeted by both kinases. We overproduced HipA and HipA7 inEscherichia coliand identified their endogenous substrates by SILAC-based quantitative phosphoproteomics. We confirmed that GltX was the main substrate of both kinase variants and likely the primary determinant of persistence. When HipA and HipA7 were moderately overproduced from plasmids, HipA7 targeted only GltX, but HipA phosphorylated several additional substrates involved in translation, transcription, and replication, such as ribosomal protein L11 (RplK) and the negative modulator of replication initiation, SeqA. HipA7 showed reduced kinase activity compared to HipA and targeted a substrate pool similar to that of HipA only when produced from a high–copy number plasmid. The kinase variants also differed in autophosphorylation, which was substantially reduced for HipA7. When produced endogenously from the chromosome, HipA showed no activity because of inhibition by the antitoxin HipB, whereas HipA7 phosphorylated GltX and phage shock protein PspA. Initial testing did not reveal a connection between HipA-induced phosphorylation of RplK and persistence or growth inhibition, suggesting that other HipA-specific substrates were likely responsible for growth inhibition. Our results contribute to the understanding of HipA7 action and present a resource for elucidating HipA-related persistence.



2016 ◽  
Vol 111 (3) ◽  
pp. 467-479 ◽  
Author(s):  
Yong Wang ◽  
Paul Penkul ◽  
Joshua N. Milstein


Sign in / Sign up

Export Citation Format

Share Document