scholarly journals mprA, an Escherichia coli gene that reduces growth-phase-dependent synthesis of microcins B17 and C7 and blocks osmoinduction of proU when cloned on a high-copy-number plasmid.

1990 ◽  
Vol 172 (1) ◽  
pp. 437-445 ◽  
Author(s):  
I del Castillo ◽  
J M Gómez ◽  
F Moreno
Microbiology ◽  
2006 ◽  
Vol 152 (3) ◽  
pp. 657-666 ◽  
Author(s):  
Sang-Hyun Kim ◽  
Wenyi Jia ◽  
Valeria R. Parreira ◽  
Russell E. Bishop ◽  
Carlton L. Gyles

This study shows that lipid A of Escherichia coli O157 : H7 differs from that of E. coli K-12 in that it has a phosphoform at the C-1 position, which is distinctively modified by a phosphoethanolamine (PEtN) moiety, in addition to the diphosphoryl form. The pmrC gene responsible for the addition of PEtN to the lipid A of E. coli O157 : H7 was inactivated and the changes in lipid A profiles were assessed. The pmrC null mutant still produced PEtN-modified lipid A species, albeit in a reduced amount, indicating that PmrC was not the only enzyme that could be used to add PEtN to lipid A. Natural PEtN substitution was shown to be present in the lipid A of other serotypes of enterohaemorrhagic E. coli and absent from the lipid A of E. coli K-12. However, the cloned pmrC O157 gene in a high-copy-number plasmid generated a large amount of PEtN-substituted lipid A species in E. coli K-12. The occurrence of PEtN-substituted lipid A species was associated with a slight increase in the MICs of cationic peptide antibiotics, suggesting that the lipid A modification with PEtN would be beneficial for survival of E. coli O157 : H7 in certain environmental niches. However, PEtN substitution in the lipid A profiles was not detected when putative inner-membrane proteins (YhbX/YbiP/YijP/Ecf3) that show significant similarity with PmrC in amino acid sequence were expressed from high-copy-number plasmids in E. coli K-12. This suggests that these potential homologues are not responsible for the addition of PEtN to lipid A in the pmrC mutant of E. coli O157 : H7. When cells were treated with EDTA, the amount of palmitoylated lipid A from the cells carrying a high-copy-number plasmid clone of pmrC O157 that resulted in significant increase of PEtN substitution was unchanged compared with cells without PEtN substitution, suggesting that the PEtN moiety substituted in lipid A does not compensate for the loss of divalent cations required for bridging neighbouring lipid A molecules.


1990 ◽  
Vol 18 (11) ◽  
pp. 3408-3408 ◽  
Author(s):  
Neil R. Hackett ◽  
Mark P. Krebs ◽  
Shiladitya DasSarma ◽  
Werner Goebel ◽  
Uttam L. RajBhandary ◽  
...  

Plasmid ◽  
2001 ◽  
Vol 46 (1) ◽  
pp. 37-46 ◽  
Author(s):  
Elizabeth Umelo-Njaka ◽  
John F. Nomellini ◽  
Harry Yim ◽  
John Smit

2003 ◽  
Vol 69 (6) ◽  
pp. 3421-3426 ◽  
Author(s):  
Sang Yup Lee ◽  
Young Lee

ABSTRACT A heterologous metabolism of polyhydroxyalkanoate (PHA) biosynthesis and degradation was established in Escherichia coli by introducing the Ralstonia eutropha PHA biosynthesis operon along with the R. eutropha intracellular PHA depolymerase gene. By with this metabolically engineered E. coli, enantiomerically pure (R)-3-hydroxybutyric acid (R3HB) could be efficiently produced from glucose. By employing a two-plasmid system, developed as the PHA biosynthesis operon on a medium-copy-number plasmid and the PHA depolymerase gene on a high-copy-number plasmid, R3HB could be produced with a yield of 49.5% (85.6% of the maximum theoretical yield) from glucose. By integration of the PHA biosynthesis genes into the chromosome of E. coli and by introducing a plasmid containing the PHA depolymerase gene, R3HB could be produced without plasmid instability in the absence of antibiotics. This strategy can be used for the production of various enantiomerically pure (R)-hydroxycarboxylic acids from renewable resources.


Sign in / Sign up

Export Citation Format

Share Document