scholarly journals Utilization of multiple microbial tools to evaluate efficacy of restoration strategies to improve recreational water quality at a Lake Michigan Beach (Racine, WI)

2020 ◽  
Vol 178 ◽  
pp. 106049
Author(s):  
Julie Kinzelman ◽  
M.N. Byappanahalli ◽  
M.B. Nevers ◽  
D. Shively ◽  
S. Kurdas ◽  
...  
2003 ◽  
Vol 69 (1) ◽  
pp. 92-96 ◽  
Author(s):  
Julie Kinzelman ◽  
Clement Ng ◽  
Emma Jackson ◽  
Stephen Gradus ◽  
Robert Bagley

ABSTRACT The frequency of poor-water-quality advisories issued in Milwaukee and Racine, Wisconsin, in the absence of identifiable sources of contamination brought into question the reliability of the present indicator organism, Escherichia coli. Enteroccoci have been suggested as an alternative to E. coli for freshwater monitoring due to their direct correlation to swimmer-associated gastroenteritis. The purpose of this research was threefold: (i) to explore enterococci as an alternative to E. coli for monitoring freshwater Lake Michigan beaches, (ii) to evaluate the impact of the two indicators on regulatory decisions, and (iii) to compare membrane filtration m-enterococcus agar with indoxyl-β-d-glucoside to a chemical substrate technique (Enterolert) for the recovery of enterococci. Recreational water samples from Milwaukee (n = 305) and Racine (n = 153) were analyzed for the enumeration of E. coli and enterococci using IDEXX Colilert-18 and Enterolert. Correlation between the indicators was low (R 2 = 0.60 and 0.69). Based on U.S. Environmental Protection Agency bacterial indicator threshold levels of risk for full body immersion, using enterococci would have resulted in 56 additional unsafe-recreational-water-quality advisories compared to the total from using E. coli and the substrate-based methods. A comparison of the two enterococcal methods (n = 124) yielded similar results (R 2 = 0.62). This was further confounded by the frequent inability to verify enterococci from those wells producing fluorescence by the defined substrate test using conventional microbiological methods. These results suggest that further research is necessary regarding the use of defined substrate technology interchangeably with the U.S. Environmental Protection Agency-approved membrane filtration test for the detection of enterococci from fresh surface water.


2018 ◽  
Vol 17 (1) ◽  
pp. 137-148
Author(s):  
Abdiel E. Laureano-Rosario ◽  
Andrew P. Duncan ◽  
Erin M. Symonds ◽  
Dragan A. Savic ◽  
Frank E. Muller-Karger

Abstract Predicting recreational water quality is key to protecting public health from exposure to wastewater-associated pathogens. It is not feasible to monitor recreational waters for all pathogens; therefore, monitoring programs use fecal indicator bacteria (FIB), such as enterococci, to identify wastewater pollution. Artificial neural networks (ANNs) were used to predict when culturable enterococci concentrations exceeded the U.S. Environmental Protection Agency (U.S. EPA) Recreational Water Quality Criteria (RWQC) at Escambron Beach, San Juan, Puerto Rico. Ten years of culturable enterococci data were analyzed together with satellite-derived sea surface temperature (SST), direct normal irradiance (DNI), turbidity, and dew point, along with local observations of precipitation and mean sea level (MSL). The factors identified as the most relevant for enterococci exceedance predictions based on the U.S. EPA RWQC were DNI, turbidity, cumulative 48 h precipitation, MSL, and SST; they predicted culturable enterococci exceedances with an accuracy of 75% and power greater than 60% based on the Receiving Operating Characteristic curve and F-Measure metrics. Results show the applicability of satellite-derived data and ANNs to predict recreational water quality at Escambron Beach. Future work should incorporate local sanitary survey data to predict risky recreational water conditions and protect human health.


2004 ◽  
Vol 2 (2) ◽  
pp. 103-114 ◽  
Author(s):  
Julie Kinzelman ◽  
Sandra L. McLellan ◽  
Annette D. Daniels ◽  
Susan Cashin ◽  
Ajaib Singh ◽  
...  

Racine, Wisconsin, located on Lake Michigan, experiences frequent recreational water quality advisories in the absence of any identifiable point source of pollution. This research examines the environmental distribution of Escherichia coli in conjunction with the assessment of additional parameters (rainfall, turbidity, wave height, wind direction, wind speed and algal presence) in order to determine the most probable factors that influence E. coli levels in surface waters. Densities of E. coli were highest in core samples taken from foreshore sands, often exceeding an order of magnitude greater than those collected from submerged sands and water. Simple regression and multivariate analyses conducted on supplementary environmental data indicate that the previous day's E. coli concentration in conjunction with wave height is significantly predictive for present-time E. coli concentration. Genetic fingerprinting using repetitive element anchored PCR and cellular fatty acid analysis were employed to assess the presence of clonal isolates which indicate replication from a common parent cell. There were relatively few occurrences of clonal patterns in isolates collected from water, foreshore and submerged sands, suggesting that accumulation of E. coli, rather than environmental replication, was occurring in this system. Non-point source pollution, namely transport of accumulated E. coli from foreshore sands to surface waters via wave action, was found to be a major contributor to poor recreational water quality at the Lake Michigan beaches involved in this study.


2020 ◽  
Vol 63 (3) ◽  
pp. 753-770 ◽  
Author(s):  
Rory Coffey ◽  
Jonathan Butcher ◽  
Brian Benham ◽  
Thomas Johnson

Highlights Increased fecal coliform (FC) loading from nonpoint sources is associated with wetter-warmer futures. Drier-warmer futures reduced FC loads but caused more recreational water quality criteria exceedances. More extensive BMP implementation may be needed to meet water quality goals. Abstract. Anticipated future hydroclimatic changes are expected to alter the transport and survival of fecally sourced waterborne pathogens, presenting an increased risk of recreational water quality impairments. Managing future risk requires an understanding of the interactions between fecal sources, hydroclimatic conditions, and best management practices (BMPs) at spatial scales relevant to decision makers. In this study, we used the Hydrologic Simulation Program FORTRAN (HSPF) to quantify potential fecal coliform (FC, an indicator of the potential presence of pathogens) responses to a range of mid-century climate scenarios and assess different BMP scenarios (based on reduction factors) for reducing the risk of water quality impairment in two small agricultural watersheds: the Chippewa watershed in Minnesota, and the Tye watershed in Virginia. In each watershed, simulations show a wide range of FC responses, driven largely by variability in projected future precipitation. Wetter future conditions, which drive more transport from nonpoint sources (e.g., manure application, livestock grazing), show increases in FC loads. Loads typically decrease in drier futures; however, higher mean FC concentrations and more recreational water quality criteria exceedances occur, likely caused by reduced flow during low-flow periods. Median changes across the ensemble generally show increases in FC load. BMPs that focus on key fecal sources (e.g., runoff from pasture, livestock defecation in streams) within a watershed can mitigate the effects of hydroclimatic change on FC loads. However, more extensive BMP implementation or improved BMP efficiency (i.e., higher FC reductions) may be needed to fully offset increases in FC load and meet water quality goals, such as total maximum daily loads and recreational water quality standards. Strategies for managing climate risk should be flexible and to the extent possible include resilient BMPs that function as designed under a range of future conditions. Keywords: Climate, HSPF, Management responses, Microbial water quality, Modeling, Watersheds.


2001 ◽  
Vol 44 (7) ◽  
pp. 181-181 ◽  
Author(s):  
R. S. Fujioka

The US Environmental Protection Agency (USEPA) and the World Health Organization (WHO) have established recreational water quality standards limiting the concentrations of faecal indicator bacteria (faecal coliform, E. coli, enterococci) to ensure that these waters are safe for swimming. In the application of these hygienic water quality standards, it is assumed that there are no significant environmental sources of these faecal indicator bacteria which are unrelated to direct faecal contamination. However, we previously reported that these faecal indicator bacteria are able to grow in the soil environment of humid tropical island environments such as Hawaii and Guam and are transported at high concentrations into streams and storm drains by rain. Thus, streams and storm drains in Hawaii contain consistently high concentrations of faecal indicator bacteria which routinely exceed the EPA and WHO recreational water quality standards. Since, streams and storm drains eventually flow out to coastal marine waters, we hypothesize that all the coastal beaches which receive run-off from streams and storm drains will contain elevated concentrations of faecal indicator bacteria. To test this hypothesis, we monitored the coastal waters at four beaches known to receive water from stream or storm drains for salinity, turbidity, and used the two faecal indicator bacteria (E. coli, enterococci) to establish recreational water quality standards. To determine if these coastal waters are contaminated with non-point source pollution (streams) or with point source pollution (sewage effluent), these same water samples were also assayed for spore-forming bacteria of faecal origin (Cl. perfringens) and of soil origin (Bacillus species). Using this monitoring strategy it was possible to determine when coastal marine waters were contaminated with non-point source pollution and when coastal waters were contaminated with point source pollution. The results of this study are most likely applicable to all countries in the warm and humid region of the world.


Sign in / Sign up

Export Citation Format

Share Document