Nucleus-directed fluorescent reporter system for promoter studies in the ectomycorrhizal fungus Laccaria bicolor

2021 ◽  
Vol 190 ◽  
pp. 106341
Author(s):  
Minna Kemppainen ◽  
Alejandro Pardo
2021 ◽  
Author(s):  
Signe Christensen ◽  
Sebastian Rämisch ◽  
Ingemar André

AbstractChaperones play a central part in the quality control system in cells by clearing misfolded and aggregated proteins. The chaperone DnaK acts as a sensor for molecular stress by recognising short hydrophobic stretches of misfolded proteins. As the level of unfolded protein is a function of protein stability, we hypothesised that the level of DnaK response upon overexpression of recombinant proteins would be correlated to stability. Using a set of mutants of the λ-repressor with varying thermal stabilities and a fluorescent reporter system, the effect of stability on DnaK response and protein abundance was investigated. Our results demonstrate that the initial DnaK response is largely dependent on protein synthesis rate but as the recombinantly expressed protein accumulates and homeostasis is approached the response correlates strongly with stability. Furthermore, we observe a large degree of cell-cell variation in protein abundance and DnaK response in more stable proteins.


2020 ◽  
Author(s):  
Kam Pou Ha ◽  
Rebecca S. Clarke ◽  
Gyu-Lee Kim ◽  
Jane L. Brittan ◽  
Jessica E. Rowley ◽  
...  

AbstractThe repair of DNA damage is essential for bacterial viability and contributes to adaptation via increased rates of mutation and recombination. However, the mechanisms by which DNA is damaged and repaired during infection are poorly understood. Using a panel of transposon mutants, we identified the rexBA operon as important for the survival of Staphylococcus aureus in whole human blood. Mutants lacking rexB were also attenuated for virulence in murine models of both systemic and skin infections. We then demonstrated that RexAB is a member of the AddAB family of helicase/nuclease complexes responsible for initiating the repair of DNA double strand breaks. Using a fluorescent reporter system, we were able to show that neutrophils cause staphylococcal DNA double strand breaks via the oxidative burst, which are repaired by RexAB, leading to induction of the mutagenic SOS response. We found that RexAB homologues in Enterococcus faecalis and Streptococcus gordonii also promoted survival of these pathogens in human blood, suggesting that DNA double strand break repair is required for Gram-positive bacteria to survive in host tissues. Together, these data demonstrate that DNA is a target of host immune cells, leading to double-strand breaks, and that repair of this damage by an AddAB-family enzyme enables the survival of Gram-positive pathogens during infection.


2017 ◽  
Vol 7 (1) ◽  
Author(s):  
Nicolas Lemus-Diaz ◽  
Kai O. Böker ◽  
Ignacio Rodriguez-Polo ◽  
Michael Mitter ◽  
Jasmin Preis ◽  
...  

2001 ◽  
Vol 33 (12-13) ◽  
pp. 1683-1694 ◽  
Author(s):  
C Brulé ◽  
P Frey-Klett ◽  
J.C Pierrat ◽  
S Courrier ◽  
F Gérard ◽  
...  

2004 ◽  
Vol 70 (12) ◽  
pp. 7530-7538 ◽  
Author(s):  
Christopher J. Reuter ◽  
Julie A. Maupin-Furlow

ABSTRACT Proteasomes are energy-dependent proteases that are central to the quality control and regulated turnover of proteins in eukaryotic cells. Dissection of this proteolytic pathway in archaea, however, has been hampered by the lack of substrates that are easily detected in whole cells. In the present study, we developed a convenient reporter system by functional expression of a green fluorescent protein variant with C-terminal fusions in the haloarchaeon Haloferax volcanii. The levels of this reporter protein correlated with whole-cell fluorescence that was readily detected in culture. Accumulation of the reporter protein was dependent on the sequence of the C-terminal amino acid fusion, as well as the presence of an irreversible, proteasome-specific inhibitor (clasto-lactacystin β-lactone). This inhibitor was highly specific for H. volcanii 20S proteasomes, with a Ki of ∼40 nM. In contrast, phenylmethanesulfonyl fluoride did not influence the levels of fluorescent reporter protein or inhibit 20S proteasomes. Together, these findings provide a powerful tool for the elucidation of protein substrate recognition motifs and the identification of new genes which may be involved in the proteasome pathway of archaea.


Sign in / Sign up

Export Citation Format

Share Document