scholarly journals Staphylococcal DNA repair is required for infection

2020 ◽  
Author(s):  
Kam Pou Ha ◽  
Rebecca S. Clarke ◽  
Gyu-Lee Kim ◽  
Jane L. Brittan ◽  
Jessica E. Rowley ◽  
...  

AbstractThe repair of DNA damage is essential for bacterial viability and contributes to adaptation via increased rates of mutation and recombination. However, the mechanisms by which DNA is damaged and repaired during infection are poorly understood. Using a panel of transposon mutants, we identified the rexBA operon as important for the survival of Staphylococcus aureus in whole human blood. Mutants lacking rexB were also attenuated for virulence in murine models of both systemic and skin infections. We then demonstrated that RexAB is a member of the AddAB family of helicase/nuclease complexes responsible for initiating the repair of DNA double strand breaks. Using a fluorescent reporter system, we were able to show that neutrophils cause staphylococcal DNA double strand breaks via the oxidative burst, which are repaired by RexAB, leading to induction of the mutagenic SOS response. We found that RexAB homologues in Enterococcus faecalis and Streptococcus gordonii also promoted survival of these pathogens in human blood, suggesting that DNA double strand break repair is required for Gram-positive bacteria to survive in host tissues. Together, these data demonstrate that DNA is a target of host immune cells, leading to double-strand breaks, and that repair of this damage by an AddAB-family enzyme enables the survival of Gram-positive pathogens during infection.

2018 ◽  
Vol 1 (1) ◽  
Author(s):  
Anna Biernacka ◽  
Yingjie Zhu ◽  
Magdalena Skrzypczak ◽  
Romain Forey ◽  
Benjamin Pardo ◽  
...  

AbstractMaintenance of genome stability is a key issue for cell fate that could be compromised by chromosome deletions and translocations caused by DNA double-strand breaks (DSBs). Thus development of precise and sensitive tools for DSBs labeling is of great importance for understanding mechanisms of DSB formation, their sensing and repair. Until now there has been no high resolution and specific DSB detection technique that would be applicable to any cells regardless of their size. Here, we present i-BLESS, a universal method for direct genome-wide DNA double-strand break labeling in cells immobilized in agarose beads. i-BLESS has three key advantages: it is the only unbiased method applicable to yeast, achieves a sensitivity of one break at a given position in 100,000 cells, and eliminates background noise while still allowing for fixation of samples. The method allows detection of ultra-rare breaks such as those forming spontaneously at G-quadruplexes.


2021 ◽  
Author(s):  
Takaaki Yasuhara ◽  
Reona Kato ◽  
Motohiro Yamauchi ◽  
Yuki Uchihara ◽  
Lee Zou ◽  
...  

AbstractR-loops, consisting of ssDNA and DNA-RNA hybrids, are potentially vulnerable unless they are appropriately processed. Recent evidence suggests that R-loops can form in the proximity of DNA double-strand breaks (DSBs) within transcriptionally active regions. Yet, how the vulnerability of R-loops is overcome during DSB repair remains unclear. Here, we identify RAP80 as a factor suppressing the vulnerability of ssDNA in R-loops and chromosome translocations and deletions during DSB repair. Mechanistically, RAP80 prevents unscheduled nucleolytic processing of ssDNA in R-loops by CtIP. This mechanism promotes efficient DSB repair via transcription-associated end-joining dependent on BRCA1, Polθ, and LIG1/3. Thus, RAP80 suppresses the vulnerability of R-loops during DSB repair, thereby precluding genomic abnormalities in a critical component of the genome caused by deleterious R-loop processing.


Author(s):  
Roopa Thapar

DNA double-strand breaks (DSBs) are deleterious lesions that are generated in response to ionizing radiation or replication fork collapse that can lead to genomic instability and cancer.  Eukaryotes have evolved two major pathways, namely homologous recombination (HR) and non-homologous end joining (NHEJ) to repair DSBs.  Whereas the roles of protein-DNA interactions in HR and NHEJ have been fairly well defined, the functions of small and long non-coding RNAs and RNA-DNA hybrids in the DNA damage response is just beginning to be elucidated.  This review summarizes recent discoveries on the identification of non-coding RNAs and RNA-mediated regulation of DSB repair


mBio ◽  
2020 ◽  
Vol 11 (6) ◽  
Author(s):  
Kam Pou Ha ◽  
Rebecca S. Clarke ◽  
Gyu-Lee Kim ◽  
Jane L. Brittan ◽  
Jessica E. Rowley ◽  
...  

ABSTRACT To cause infection, Staphylococcus aureus must withstand damage caused by host immune defenses. However, the mechanisms by which staphylococcal DNA is damaged and repaired during infection are poorly understood. Using a panel of transposon mutants, we identified the rexBA operon as being important for the survival of Staphylococcus aureus in whole human blood. Mutants lacking rexB were also attenuated for virulence in murine models of both systemic and skin infections. We then demonstrated that RexAB is a member of the AddAB family of helicase/nuclease complexes responsible for initiating the repair of DNA double-strand breaks. Using a fluorescent reporter system, we were able to show that neutrophils cause staphylococcal DNA double-strand breaks through reactive oxygen species (ROS) generated by the respiratory burst, which are repaired by RexAB, leading to the induction of the mutagenic SOS response. We found that RexAB homologues in Enterococcus faecalis and Streptococcus gordonii also promoted the survival of these pathogens in human blood, suggesting that DNA double-strand break repair is required for Gram-positive bacteria to survive in host tissues. Together, these data demonstrate that DNA is a target of host immune cells, leading to double-strand breaks, and that the repair of this damage by an AddAB-family enzyme enables the survival of Gram-positive pathogens during infection. IMPORTANCE To cause infection, bacteria must survive attack by the host immune system. For many bacteria, including the major human pathogen Staphylococcus aureus, the greatest threat is posed by neutrophils. These immune cells ingest the invading organisms and try to kill them with a cocktail of chemicals that includes reactive oxygen species (ROS). The ability of S. aureus to survive this attack is crucial for the progression of infection. However, it was not clear how the ROS damaged S. aureus and how the bacterium repaired this damage. In this work, we show that ROS cause breaks in the staphylococcal DNA, which must be repaired by a two-protein complex known as RexAB; otherwise, the bacterium is killed, and it cannot sustain infection. This provides information on the type of damage that neutrophils cause S. aureus and the mechanism by which this damage is repaired, enabling infection.


2007 ◽  
Vol 85 (6) ◽  
pp. 663-674 ◽  
Author(s):  
Kendra L. Cann ◽  
Geoffrey G. Hicks

DNA double-strand breaks occur frequently in cycling cells, and are also induced by exogenous sources, including ionizing radiation. Cells have developed integrated double-strand break response pathways to cope with these lesions, including pathways that initiate DNA repair (either via homologous recombination or nonhomologous end joining), the cell-cycle checkpoints (G1–S, intra-S phase, and G2–M) that provide time for repair, and apoptosis. However, before any of these pathways can be activated, the damage must first be recognized. In this review, we will discuss how the response of mammalian cells to DNA double-strand breaks is regulated, beginning with the activation of ATM, the pinnacle kinase of the double-strand break signalling cascade.


Molecules ◽  
2018 ◽  
Vol 23 (11) ◽  
pp. 2789 ◽  
Author(s):  
Roopa Thapar

DNA double-strand breaks (DSBs) are deleterious lesions that are generated in response to ionizing radiation or replication fork collapse that can lead to genomic instability and cancer. Eukaryotes have evolved two major pathways, namely homologous recombination (HR) and non-homologous end joining (NHEJ) to repair DSBs. Whereas the roles of protein-DNA interactions in HR and NHEJ have been fairly well defined, the functions of small and long non-coding RNAs and RNA-DNA hybrids in the DNA damage response is just beginning to be elucidated. This review summarizes recent discoveries on the identification of non-coding RNAs and RNA-mediated regulation of DSB repair.


2018 ◽  
Author(s):  
Valentina Infantino ◽  
Evelina Tutucci ◽  
Noël Yeh Martin ◽  
Audrey Zihlmann ◽  
Varinia García-Molinero ◽  
...  

ABSTRACTYra1 is an mRNA export adaptor involved in mRNA biogenesis and export in S. cerevisiae. Yra1 overexpression was recently shown to promote accumulation of DNA:RNA hybrids favoring DNA double strand breaks (DSB), cell senescence and telomere shortening, via an unknown mechanism. Yra1 was also identified at an HO-induced DSB and Yra1 depletion causes defects in DSB repair. Previous work from our laboratory showed that Yra1 ubiquitination by Tom1 is important for mRNA export. Interestingly, we found that Yra1 is also ubiquitinated by the SUMO-targeted ubiquitin ligases Slx5-Slx8 implicated in the interaction of irreparable DSB with nuclear pores. Here we show that Yra1 binds an HO-induced irreparable DSB. Importantly, a Yra1 mutant lacking the evolutionarily conserved C-box is not recruited to an HO-induced irreparable DSB and becomes lethal under DSB induction in a HO-cut reparable system. Together, the data provide evidence that Yra1 plays a crucial role in DSB repair via homologous recombination. Unexpectedly, while the Yra1 C-box is essential, Yra1 sumoylation and/or ubiquitination are dispensable in this process.


1986 ◽  
Vol 64 (5) ◽  
pp. 581-585 ◽  
Author(s):  
Asher Begleiter

Studies have shown that the quinone group can produce tumor cell kill by a mechanism involving active oxygen species. This cytotoxic activity can be correlated with the induction of DNA double strand breaks and is enhanced by the ability of the quinone compound to bind to DNA by alkylation. The cytotoxic activity and the production of DNA damage by model quinone antitumor agents were compared in L5178Y cells, sensitive and resistant to alkylating agents, to assess the contribution of alkylation to the activity of these agents. The resistant L5178Y/HN2 cells were found to be two fold and six fold more resistant to the alkylating quinones, benzoquinone mustard and benzoquinone dimustard, respectively, than parent L5178Y cells. In contrast, the L5178 Y/HN2 cells showed no resistance to the nonalkylating quinones, hydrolyzed benzoquinone mustard and bis(dimethylamino)benzoquinone. The alkylating quinones produced approximately two fold less cross-linking in L5178Y/HN2 cells compared with L5178Y sensitive cells. DNA double strand break formation by hydrolyzed benzoquinone mustard and bis(dimethylamino)benzoquinone was not significantly different in sensitive and resistant cells. However, the induction of double strand breaks by the alkylating quinones benzoquinone mustard and benzoquinone dimustard was reduced by 5-fold and 15-fold, respectively, in L5178Y/HN2 cells. These results show that the alkylating activity of the alkylating quinones cannot directly explain all of the enhanced cytotoxic activity of these agents. Furthermore, they provide strong evidence that the enhanced formation of DNA double strand breaks by alkylating quinone agents is directly related to the ability of these agents to bind to DNA. This increased formation of strand breaks may account for the enhanced cytotoxic activity of the alkylating quinones.


2017 ◽  
Vol 216 (11) ◽  
pp. 3521-3534 ◽  
Author(s):  
Dharm S. Patel ◽  
Sarah M. Misenko ◽  
Joonyoung Her ◽  
Samuel F. Bunting

The BLM gene product, BLM, is a RECQ helicase that is involved in DNA replication and repair of DNA double-strand breaks by the homologous recombination (HR) pathway. During HR, BLM has both pro- and anti-recombinogenic activities, either of which may contribute to maintenance of genomic integrity. We find that in cells expressing a mutant version of BRCA1, an essential HR factor, ablation of BLM rescues genomic integrity and cell survival in the presence of DNA double-strand breaks. Improved genomic integrity in these cells is linked to a substantial increase in the stability of RAD51 at DNA double-strand break sites and in the overall efficiency of HR. Ablation of BLM also rescues RAD51 foci and HR in cells lacking BRCA2 or XRCC2. These results indicate that the anti-recombinase activity of BLM is of general importance for normal retention of RAD51 at DNA break sites and regulation of HR.


2002 ◽  
Vol 22 (23) ◽  
pp. 8353-8365 ◽  
Author(s):  
Song Qin ◽  
Mark R. Parthun

ABSTRACT The modification of newly synthesized histones H3 and H4 by type B histone acetyltransferases has been proposed to play a role in the process of chromatin assembly. The type B histone acetyltransferase Hat1p and specific lysine residues in the histone H3 NH2-terminal tail (primarily lysine 14) are redundantly required for telomeric silencing. As many gene products, including other factors involved in chromatin assembly, have been found to participate in both telomeric silencing and DNA damage repair, we tested whether mutations in HAT1 and the histone H3 tail were also sensitive to DNA-damaging agents. Indeed, mutations both in specific lysine residues in the histone H3 tail and in HAT1 resulted in sensitivity to methyl methanesulfonate. The DNA damage sensitivity of the histone H3 and HAT1 mutants was specific for DNA double-strand breaks, as these mutants were sensitive to the induction of an exogenous restriction endonuclease, EcoRI, but not to UV irradiation. While histone H3 mutations had minor effects on nonhomologous end joining, the primary defect in the histone H3 and HAT1 mutants was in the recombinational repair of DNA double-strand breaks. Epistasis analysis indicates that the histone H3 and HAT1 mutants may influence DNA double-strand break repair through Asf1p-dependent chromatin assembly.


Sign in / Sign up

Export Citation Format

Share Document