Arsenic removal from industrial effluent: In-situ ferric sulfate production and arsenic partitioning in the residues

2021 ◽  
Vol 169 ◽  
pp. 106945
Author(s):  
H.L. Mendes ◽  
C.L. Caldeira ◽  
V.S.T. Ciminelli
2007 ◽  
Vol 24 (5) ◽  
pp. 707-715 ◽  
Author(s):  
Ruiping Liu ◽  
Jiuhui Qu ◽  
Shengji Xia ◽  
Gaosheng Zhang ◽  
Guibai Li

2014 ◽  
Vol 19 ◽  
pp. 11-20
Author(s):  
Debika Bhunia ◽  
Subhodeep Sarkar ◽  
Kushal Banerjee ◽  
Abantika Nandy ◽  
Soumendra Nath Talapatra

Behavioural activities in relation to toxicological aspects involve behavioural changes of aquatic organisms under the exposure of a contaminant. The present study aims to know behavioural activities of midge larvae Chironomus sp. at the in-situ acute exposure of different chemicals containing wastewater viz. lead-acid battery industrial effluent, mixed industrial effluent and fresh tap water (chlorinated) as drinking water in comparison to control (dechlorinated) water sample (aged tap water). The Chironomus larvae were kept in three different experimental chambers (perforated wall test vessels) with the exposure of different water samples. These samples were made with no dilution, 50 % dilution, 2.5 % dilution and control water sample. The behavioral activities for larvae of Chironomus sp. were measured at 0h, 2h, 24h and 48 h in in-situ condition. The behavioral activities viz. crawling, looping, ventilation, paralyses and subsequently death of the larvae were recorded in the field condition. A significant differences (P < 0.05, P < 0.01 and P< 0.001) were observed with increasing time of exposure while in few cases the data were increased without significance level. It was recorded that after exhibiting behavioural activities viz. crawling, looping, ventilation and paralyses finally all species were died 100 % of the population in lead acid battery effluent following both 24h and 48hr exposure. In addition, death of larvae were 70 % in mixed industrial effluent and 50 % in fresh tap water (chlorinated) after 48h exposure as compared to control sample water. In conclusion, the present results indicate that the larvae of Chironomous sp. are suitable indicators in the evaluation of the effluent quality in the studied stream, potential to know by behavioural toxicological study for heavy metals and organic pollution. Although it is a preliminary observation by assessing behavioural toxicology but future study in relation to biochemical and genetic damage of Chironomous larvae with the exposure of toxic water samples will provide bigger view.


2018 ◽  
Vol 147 ◽  
pp. 321-330 ◽  
Author(s):  
Tao Yang ◽  
Yulei Liu ◽  
Lu Wang ◽  
Jin Jiang ◽  
Zhuangsong Huang ◽  
...  

2020 ◽  
Vol 54 (10) ◽  
pp. 6094-6103
Author(s):  
Siva R. S. Bandaru ◽  
Case M. van Genuchten ◽  
Arkadeep Kumar ◽  
Sara Glade ◽  
Dana Hernandez ◽  
...  

2010 ◽  
Vol 62 (11) ◽  
pp. 2702-2709 ◽  
Author(s):  
D. van Halem ◽  
S. G. J. Heijman ◽  
R. Johnston ◽  
I. M. Huq ◽  
S. K. Ghosh ◽  
...  

The principle of subsurface or in situ iron and arsenic removal is that aerated water is periodically injected into an anoxic aquifer through a tube well, displacing groundwater containing Fe(II). An oxidation zone is created around the tube well where Fe(II) is oxidised. The freshly formed iron hydroxide surfaces provide new sorption sites for soluble Fe(II) and arsenic. The system's efficiency is determined based on the ratio between abstracted volume with reduced iron/arsenic concentrations (V) and the injected volume (Vi). In the field study presented in this paper, the small-scale application of this technology was investigated in rural Bangladesh. It was found that at small injection volumes (&lt;1 m3) iron removal was successful and became more effective with every successive cycle. For arsenic, however, the system did not prove to be very effective yet. Arsenic retardation was only limited and breakthrough of 10 μg/L (WHO guideline) was observed before V/Vi=1, which corresponds to arrival of groundwater at the well. Possible explanations for insufficient arsenic adsorption are the short contact times within the oxidation zone, and the presence of competing anions, like phosphate.


2008 ◽  
Vol 58 (10) ◽  
pp. 2009-2015 ◽  
Author(s):  
U. Rott ◽  
H. Kauffmann

Arsenic in groundwater is a huge problem in numerous regions of the world. Many people are exposed to high arsenic concentrations and consequently risk getting ill or even die as a result of arsenic poisoning. There are several efficient technologies for the removal of arsenic but often these methods have disadvantages, e.g. high costs for installation and/or operation, the need for chemicals or the production of arsenic contaminated filter sludge. These disadvantages can make the application difficult, especially in poor regions. Under suitable ancillary conditions the subterranean (in-situ) treatment, which is often used for iron and manganese removal from groundwater, can also be applied for the removal of arsenic and can be a cost-effective treatment technology. A field trial was carried out with a low-cost in-situ treatment plant in West Bengal/India which is described in this paper, in order to investigate whether this treatment technology is also applicable under the boundary conditions there. As for the in-situ treatment technology besides oxygen no additives are required and no arsenic contaminated filter sludge is produced this technology could be a suitable method for arsenic removal especially in poor regions.


2008 ◽  
Vol 23 (8) ◽  
pp. 2477-2495 ◽  
Author(s):  
Alan H. Welch ◽  
Kenneth G. Stollenwerk ◽  
Angela P. Paul ◽  
Douglas K. Maurer ◽  
Keith J. Halford
Keyword(s):  

Sign in / Sign up

Export Citation Format

Share Document