Expression, localization, and erythrocyte binding activity of Plasmodium yoelii merozoite surface protein-8

2006 ◽  
Vol 149 (2) ◽  
pp. 231-241 ◽  
Author(s):  
Qifang Shi ◽  
Amy Cernetich-Ott ◽  
Michelle M. Lynch ◽  
James M. Burns
2008 ◽  
Vol 77 (2) ◽  
pp. 817-824 ◽  
Author(s):  
Jiraprapa Wipasa ◽  
Huji Xu ◽  
Xueqin Liu ◽  
Chakrit Hirunpetcharat ◽  
Anthony Stowers ◽  
...  

ABSTRACT It is well known that exposure to one antigen can modulate the immune responses that develop following exposure to closely related antigens. It is also known that the composition of the repertoire can be skewed to favor epitopes shared between a current infection and a preceding one, a phenomenon referred to as “original antigenic sin.” It was of interest, therefore, to investigate the antibody response that develops following exposure to the malaria vaccine candidate homologue Plasmodium yoelii MSP119 in mice that had previously experienced malaria infection and vice versa. In this study, preexposure of mice to Plasmodium yoelii elicited native anti-MSP119 antibody responses, which could be boosted by vaccination with recombinant MSP119. Likewise, infection of MSP119-primed mice with P. yoelii led to an increase of anti-MSP119 antibodies. However, this increase was at the expense of antibodies to parasite determinants other than MSP119. This change in the balance of antibody specificities significantly affected the ability of mice to withstand a subsequent infection. These data have particular relevance to the possible outcome of malaria vaccination for those situations where the vaccine response is suboptimal and suggest that suboptimal vaccination may in fact render the ultimate acquisition of natural immunity more difficult.


2002 ◽  
Vol 70 (11) ◽  
pp. 6013-6020 ◽  
Author(s):  
Jiraprapa Wipasa ◽  
Huji Xu ◽  
Morris Makobongo ◽  
Michelle Gatton ◽  
Anthony Stowers ◽  
...  

ABSTRACT Immunity induced by the 19-kDa fragment of Plasmodium yoelii merozoite surface protein 1 (MSP119) is dependent on high titers of specific antibodies present at the time of challenge and a continuing active immune response postinfection. However, the specificity of the active immune response postinfection has not been defined. In particular, it is not known whether anti-MSP119 antibodies that arise following infection alone are sufficient for protection. We developed systems to investigate whether an MSP119-specific antibody response alone both prechallenge and postchallenge is sufficient for protection. We were able to exclude antibodies with other specificities, as well as any contribution of MSP119-specific CD4+ T cells acting independent of antibody, and we concluded that an immune response focused solely on MSP119-specific antibodies is sufficient for protection. The data imply that the ability of natural infection to boost an MSP119-specific antibody response should greatly improve vaccine efficacy.


2004 ◽  
Vol 72 (10) ◽  
pp. 6172-6175 ◽  
Author(s):  
Lina Wang ◽  
Matthew W. Goschnick ◽  
Ross L. Coppel

ABSTRACT Oral immunization of mice with Escherichia coli-expressed Plasmodium yoelii merozoite surface protein 4/5 or the C-terminal 19-kDa fragment of merozoite surface protein 1 induced systemic antibody responses and protected mice against lethal malaria infection. A combination of these two proteins administered orally conferred improved protection compared to that conferred by either protein administered alone.


2000 ◽  
Vol 68 (5) ◽  
pp. 3019-3022 ◽  
Author(s):  
Peter Vukovic ◽  
P. Mark Hogarth ◽  
Nadine Barnes ◽  
David C. Kaslow ◽  
Michael F. Good

ABSTRACT Merozoite surface protein 1 (MSP-119) is a leading malaria vaccine candidate. Specific antibodies contribute to immunity; binding to macrophages is believed to represent the main action of malaria antibodies. We show that an MSP-119-specific immunoglobulin G3 (IgG3) monoclonal antibody can passively transfer protection to mice deficient in the α chain of Fc-γRI whose macrophages cannot bind IgG3.


2002 ◽  
Vol 70 (2) ◽  
pp. 820-825 ◽  
Author(s):  
Niklas Ahlborg ◽  
Irene T. Ling ◽  
Wendy Howard ◽  
Anthony A. Holder ◽  
Eleanor M. Riley

ABSTRACT Vaccination of mice with the 42-kDa region of Plasmodium yoelii merozoite surface protein 1 (MSP142) or its 19-kDa C-terminal processing product (MSP119) can elicit protective antibody responses in mice. To investigate if the 33-kDa N-terminal fragment (MSP133) of MSP142 also induces protection, the gene segment encoding MSP133 was expressed as a glutathione S-transferase (GST) fusion protein. C57BL/6 and BALB/c mice were immunized with GST-MSP133 and subsequently challenged with the lethal P. yoelii YM blood stage parasite. GST-MSP133 failed to induce protection, and all mice developed patent parasitemia at a level similar to that in naive or control (GST-immunized) mice; mice immunized with GST-MSP119 were protected, as has been shown previously. Specific prechallenge immunoglobulin G (IgG) antibody responses to MSP1 were analyzed by enzyme-linked immunosorbent assay and immunofluorescence. Despite being unprotected, several mice immunized with MSP133 had antibody titers (of all IgG subclasses) that were comparable to or higher than those in mice that were protected following immunization with MSP119. The finding that P. yoelii MSP133 elicits strong but nonprotective antibody responses may have implications for the design of vaccines for humans based on Plasmodium falciparum or Plasmodium vivax MSP142.


Sign in / Sign up

Export Citation Format

Share Document