Immobilized lipase-catalysed synthesis of cinnamyl laurate in non-aqueous media

2009 ◽  
Vol 57 (1-4) ◽  
pp. 34-39 ◽  
Author(s):  
Ganapati D. Yadav ◽  
Shrikant B. Dhoot
Nanomaterials ◽  
2019 ◽  
Vol 9 (6) ◽  
pp. 808 ◽  
Author(s):  
Renia Fotiadou ◽  
Michaela Patila ◽  
Mohamed Amen Hammami ◽  
Apostolos Enotiadis ◽  
Dimitrios Moschovas ◽  
...  

In the present study, hybrid nanoflowers (HNFs) based on copper (II) or manganese (II) ions were prepared by a simple method and used as nanosupports for the development of effective nanobiocatalysts through the immobilization of lipase B from Pseudozyma antarctica. The hybrid nanobiocatalysts were characterized by various techniques including scanning electron microscopy (SEM), energy dispersion spectroscopy (EDS), X-ray diffraction (XRD), Raman spectroscopy, and Fourier transform infrared spectroscopy (FTIR). The effect of the addition of carbon-based nanomaterials, namely graphene oxide and carbon nanotubes, as well as magnetic nanoparticles such as maghemite, on the structure, catalytic activity, and operational stability of the hybrid nanobiocatalysts was also investigated. In all cases, the addition of nanomaterials during the preparation of HNFs increased the catalytic activity and the operational stability of the immobilized biocatalyst. Lipase-based magnetic nanoflowers were effectively applied for the synthesis of tyrosol esters in non-aqueous media, such as organic solvents, ionic liquids, and environmental friendly deep eutectic solvents. In such media, the immobilized lipase preserved almost 100% of its initial activity after eight successive catalytic cycles, indicating that these hybrid magnetic nanoflowers can be applied for the development of efficient nanobiocatalytic systems.


2016 ◽  
Vol 18 (3) ◽  
pp. 134-140 ◽  
Author(s):  
Cansu Ulker ◽  
Nurefsan Gokalp ◽  
Yuksel Guvenilir

Abstract In the present study, rice husk ash, which is a renewable and abundant material, was utilized as a carrier for lipase immobilization for the first time. Poly (ε-caprolactone) synthesis was successfully achieved by the new enzymatic catalyst: Candida antarctica lipase B immobilized onto surface-modified rice husk ashes by covalent binding. It was aimed to obtain optimum polymerization conditions at which highest molecular weight was reached and characterize the polymer produced. Moreover, thermal stability and effectiveness of the new biocatalyst in non-aqueous media were also shown with successful polymerization reactions. In addition, by using the new enzyme preparation, ε-caprolactone was able to be polymerized even at 30°C, which was promising for an energy saving process. Consequently, this work provides a new alternative route for poly (ε-caprolactone) synthesis.


2016 ◽  
Vol 14 (4) ◽  
pp. 919-928 ◽  
Author(s):  
Moreshwar P. Hude ◽  
Janusz Kozinski ◽  
Ajay K. Dalai ◽  
Ganapati D. Yadav

Abstract Hexagonal mesoporous type silica SBA-15 with pore sizes in the range 5.0–8.3 nm was synthesized using non-ionic triblock copolymer and characterized by Accelerated Surface Area Porosimetry (ASAP), FT-IR spectroscopy, X-ray diffraction (XRD) and Scanning Electron Microscopy (SEM). Different lipases were immobilized in glutaraldehyde activated mesoporous SBA-15 support. The resulting supported enzymes were shown to be active and stable catalysts for esterification of glycerol with oleic acid to produce monoglyceride (MG) which is commonly used in food industry. Various parameters were studied systematically to study kinetics. MG Synthesis using enzymatic process is an environmentally friendly approach. Enzyme immobilized on SBA-15 showed the best stability and catalytic activity in organic solvents. Out of various lipases studied penicillium camembertii (Lipase G) produced MG efficiently at low temperature. Reusability was studied on immobilized enzymes. Immobilized lipase maintained 90 % of its esterification activity in non-aqueous media even after 4 cycles of use. The selectivity of Lipase G is found to be 98 % for monoacylglyceride.


Nanomaterials ◽  
2021 ◽  
Vol 11 (2) ◽  
pp. 458
Author(s):  
Renia Fotiadou ◽  
Alexandra V. Chatzikonstantinou ◽  
Mohamed Amen Hammami ◽  
Nikolaos Chalmpes ◽  
Dimitrios Moschovas ◽  
...  

In this work, hybrid zinc oxide–iron oxide (ZnOFe) magnetic nanoparticles were synthesized employing Olea europaea leaf aqueous extract as a reducing/chelating and capping medium. The resulting magnetic nanoparticles were characterized by basic spectroscopic and microscopic techniques, namely, X-ray diffraction (XRD), X-ray photoelectron spectroscopy (XPS), fourier-transform infrared (FTIR) and atomic force microscopy (AFM), exhibiting a spherical shape, average size of 15–17 nm, and a functionalized surface. Lipase from Thermomyces lanuginosus (TLL) was efficiently immobilized on the surface of ZnOFe nanoparticles through physical absorption. The activity of immobilized lipase was found to directly depend on the enzyme to support the mass ratio, and also demonstrated improved pH and temperature activity range compared to free lipase. Furthermore, the novel magnetic nanobiocatalyst (ZnOFe-TLL) was applied to the preparation of hydroxytyrosyl fatty acid esters, including derivatives with omega-3 fatty acids, in non-aqueous media. Conversion yields up to 90% were observed in non-polar solvents, including hydrophobic ionic liquids. Different factors affecting the biocatalyst performance were studied. ZnOFe-TLL was reutilized for eight subsequent cycles, exhibiting 90% remaining esterification activity (720 h of total operation at 50 °C). The green synthesized magnetic nanoparticles, reported here for the first time, are excellent candidates as nanosupports for the immobilization of enzymes with industrial interest, giving rise to nanobiocatalysts with elevated features.


2020 ◽  
Vol 56 (27) ◽  
pp. 3851-3854 ◽  
Author(s):  
Xiaomin Chai ◽  
Hai-Hua Huang ◽  
Huiping Liu ◽  
Zhuofeng Ke ◽  
Wen-Wen Yong ◽  
...  

A Co-based complex displayed the highest photocatalytic performance for CO2 to CO conversion in aqueous media.


Sign in / Sign up

Export Citation Format

Share Document