nano catalyst
Recently Published Documents


TOTAL DOCUMENTS

483
(FIVE YEARS 240)

H-INDEX

33
(FIVE YEARS 12)

Author(s):  
Bi Bi Fatemeh Mirjalili ◽  
Abdolhamid Bamoniri ◽  
Seyede Azita Fazeli-Attar
Keyword(s):  

ChemNanoMat ◽  
2022 ◽  
Author(s):  
Anosha Rubab ◽  
Nadeem Baig ◽  
Muhammad Sher ◽  
Mubarak Ali ◽  
Anwar ul Hameed ◽  
...  

RSC Advances ◽  
2022 ◽  
Vol 12 (2) ◽  
pp. 834-844
Author(s):  
Mohammad Nikpassand ◽  
Leila Zare Fekri ◽  
Rajender S. Varma ◽  
Lida Hassanzadi ◽  
Farhad Sedighi Pashaki

Bis(thioglycolic acid)-vanillin silica-coated Fe3O4 MNPs were synthesized, and tested as a catalyst.


Author(s):  
Weichen Zhao ◽  
Muhammad Adeel ◽  
Peng Zhang ◽  
Pingfan Zhou ◽  
Lili Huang ◽  
...  

Surface modification of nano-catalyst got significant attention due its outstanding photocatalytic performance with minimum secondary pollution. Photocatalytic oxidation (PCO) is a promising technology for removing volatile organic compounds (VOCs) due...


2021 ◽  
Vol 22 (4) ◽  
pp. 1-10
Author(s):  
Safa Abdul Salam Kamel ◽  
Wadood Taher Mohammed ◽  
Haider Aljendeel

This work deals with preparation of Sulfated Zirconia catalyst (SZ) for isomerization of n-hexane model and refinery light naphtha, as well as enhanced the role of promoters to get the target with the mild condition, stability, and to prevent formation of coke precursors on strong acidic sites of the catalyst. The prepared SZ catalysts were characterization by fourier transform infrared spectroscopy (FTIR), X-ray diffraction (XRD), Brunauer –Emmett-Teller (BET) surface area analysis, Thermogravimetric Analysis (TGA), Scanning Electron Microscope (SEM) and atomic force microscopy (AFM) Analyzer. The results illustrate that the maximum conversion and selectivity for n-hexane isomerization with Ni-WSZ and operating temperature of 150 °C was 80.1%  and 96 %   respectively .Other set of experimental with light naphtha , the results show that the maximum conversion and selectivity with Ni-WSZ and operating temperature of 150 °C  was 73.6%   and  74%   respectively.


2021 ◽  
Vol 18 (4(Suppl.)) ◽  
pp. 1557
Author(s):  
Dalya Jasim Ahmed ◽  
Basim Ibrahim Al-Abdaly ◽  
Sattar Jalil Hussein

   A new nano-sized NiMo/TiO2-γ-Al2O3 was prepared as a Hydrodesulphurization catalyst for Iraqi gas oil with sulfur content of 8980 ppm, supplied from Al-Dura Refinery. Sol-gel method was used to prepare TiO2- γ-Al2O3 nano catalyst support with 64% TiO2, 32% Al2O3, Ni-Mo/TiO-γ-Al2O3 catalyst was prepared under vacuum impregnation conditions to loading metals with percentage 3.8 wt.% and 14 wt.% for nickel and molybdenum respectively while the percentage for alumina, and titanium became 21.7, and 58.61 respectively. The synthesized TiO2- γ-Al2O3 nanocomposites and Ni-Mo /TiO2- γ-Al2O3 Nano catalyst were then characterized by XRD, AFM, and BET surface area, SEM, XRF, and FTIR. The performance of the synthesized catalyst for removing sulfur compounds was conducted through the pilot HDS laboratory unit, various temperatures range 275oC to 375°C, LHSV 1 h-1 were studied; moreover, the effect of LHSV 1 to 4 h-1 on the percentage of sulfur removal was also studied at the temperature of the best removal with constant pressure 35 bar and H2/HC ratio 200cm3/200cm3. The sulfur content results generally revealed that there was a substantial decrease at all operating conditions used, while the maximum sulfur removal was 87.75% in gas oil on Ni-Mo/TiO2-γ-Al2O3 catalyst at temperature 375˚C and LHSV 1h-1.


Sign in / Sign up

Export Citation Format

Share Document